Advertisement

Stalking Structure in Plant Long Noncoding RNAs

  • Karissa Y. SanbonmatsuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1933)

Abstract

Long noncoding RNAs play important roles in plant epigenetic processes. While many extensive studies have delineated the range of their functions in plants, few detailed studies of the structure of plant long noncoding RNAs have been performed. Here, we review genome-wide and system-specific structural studies and describe methodology for structure determination.

Key words

Long noncoding RNA Plants Evolution Selection Secondary structure COOLAIR 

Notes

Acknowledgment

This work was supported by the National Institutes of Health Grant.

References

  1. 1.
    Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216CrossRefGoogle Scholar
  2. 2.
    Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, Zhang T, Qi Y, Gerstein MB, Guo Y, Lu ZJ (2014) Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80:848–861CrossRefGoogle Scholar
  3. 3.
    Chen J, Quan M, Zhang D (2015) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125–143CrossRefGoogle Scholar
  4. 4.
    Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29:1068–1071CrossRefGoogle Scholar
  5. 5.
    Xuan H, Zhang L, Liu X, Han G, Li J, Li X, Liu A, Liao M, Zhang S (2015) PLNlncRbase: a resource for experimentally identified lncRNAs in plants. Gene 573:328–332CrossRefGoogle Scholar
  6. 6.
    Szczesniak MW, Rosikiewicz W, Makalowska I (2016) CANTATAdb: a collection of plant long non-coding RNAs. Plant Cell Physiol 57:e8CrossRefGoogle Scholar
  7. 7.
    Ma X, Shao C, Jin Y, Wang H, Meng Y (2014) Long non-coding RNAs: a novel endogenous source for the generation of Dicer-like 1-dependent small RNAs in Arabidopsis thaliana. RNA Biol 11:373–390CrossRefGoogle Scholar
  8. 8.
    Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y (2012) A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 9:302–313CrossRefGoogle Scholar
  9. 9.
    Yang H, Howard M, Dean C (2014) Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol 24:1793–1797CrossRefGoogle Scholar
  10. 10.
    Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167CrossRefGoogle Scholar
  11. 11.
    Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802CrossRefGoogle Scholar
  12. 12.
    Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–108CrossRefGoogle Scholar
  13. 13.
    Coustham V, Li P, Strange A, Lister C, Song J, Dean C (2012) Quantitative modulation of polycomb silencing underlies natural variation in vernalization. Science 337:584–587CrossRefGoogle Scholar
  14. 14.
    Ietswaart R, Wu Z, Dean C (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet 28:445–453CrossRefGoogle Scholar
  15. 15.
    Hawkes EJ, Hennelly SP, Novikova IV, Irwin JA, Dean C, Sanbonmatsu KY (2016) COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep 16:3087–3096CrossRefGoogle Scholar
  16. 16.
    Xue Z, Hennelly S, Doyle B, Gulati AA, Novikova IV, Sanbonmatsu KY, Boyer LA (2016) A G-Rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 64:37–50CrossRefGoogle Scholar
  17. 17.
    Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40:5034–5051CrossRefGoogle Scholar
  18. 18.
    Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709CrossRefGoogle Scholar
  19. 19.
    Sanbonmatsu KY (2016) Towards structural classification of long non-coding RNAs. Biochim Biophys Acta 1859:41–45CrossRefGoogle Scholar
  20. 20.
    Lin Y, Schmidt BF, Bruchez MP, McManus CJ (2018) Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res 46(7):3742–3752CrossRefGoogle Scholar
  21. 21.
    Somarowthu S, Legiewicz M, Chillon I, Marcia M, Liu F, Pyle AM (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361CrossRefGoogle Scholar
  22. 22.
    Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ, Mattick JS, Mesirov JP, Cech TR, Chang HY (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–1279CrossRefGoogle Scholar
  23. 23.
    Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416CrossRefGoogle Scholar
  24. 24.
    Delli Ponti R, Marti S, Armaos A, Tartaglia GG (2017) A high-throughput approach to profile RNA structure. Nucleic Acids Res 45:e35CrossRefGoogle Scholar
  25. 25.
    Lahmy S, Pontier D, Bies-Etheve N, Laudie M, Feng S, Jobet E, Hale CJ, Cooke R, Hakimi MA, Angelov D, Jacobsen SE, Lagrange T (2016) Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev 30:2565–2570CrossRefGoogle Scholar
  26. 26.
    Novikova IV, Dharap A, Hennelly SP, Sanbonmatsu KY (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63:170–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical Biology and Biophysics Group, Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations