Advertisement

An Overview of Methodologies in Studying lncRNAs in the High-Throughput Era: When Acronyms ATTACK!

  • Hsiao-Lin V. Wang
  • Julia A. Chekanova
Part of the Methods in Molecular Biology book series (MIMB, volume 1933)

Abstract

The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.

Key words

High-throughput methods RNA methods Noncoding RNAs lncRNAs Plant lncRNAs RNA secondary structures RNA interactions 

References

  1. 1.
    Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216CrossRefGoogle Scholar
  2. 2.
    Wang H-LV, Chekanova JA (2017) Long Noncoding RNAs in Plants. Adv Exp Med Biol 1008:133–154CrossRefGoogle Scholar
  3. 3.
    Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62PubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralGoogle Scholar
  5. 5.
    Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cheng C-Y, Krishnakumar V, Chan AP et al (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804Google Scholar
  8. 8.
    Jin J, Liu J, Wang H et al (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29:1068–1071PubMedPubMedCentralGoogle Scholar
  9. 9.
    Paytuví Gallart A, Hermoso Pulido A, Anzar Martínez de Lagrán I et al (2015) GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44(Database issue):D1161–D1166.  https://doi.org/10.1093/nar/gkv1215CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao Y, Li H, Fang S et al (2016) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44:D203–D208PubMedPubMedCentralGoogle Scholar
  11. 11.
    Szcześniak MW, Rosikiewicz W, Makałowska I (2016) CANTATAdb: a collection of plant long non-coding RNAs. Plant Cell Physiol 57:e8–e8PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yi X, Zhang Z, Ling Y et al (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989Google Scholar
  13. 13.
    Zhou B, Zhao H, Yu J et al (2018) EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 46(D1):D100–D105Google Scholar
  14. 14.
    Chen D, Yuan C, Zhang J et al (2012) PlantNATsDB: a comprehensive database of plant natural antisense transcripts. Nucleic Acids Res 40:D1187–D1193Google Scholar
  15. 15.
    Kapranov P, Cawley SE, Drenkow J et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919PubMedPubMedCentralGoogle Scholar
  16. 16.
    Shoemaker DD, Schadt EE, Armour CD et al (2001) Experimental annotation of the human genome using microarray technology. Nature 409:922–927PubMedPubMedCentralGoogle Scholar
  17. 17.
    Yazaki J, Gregory BD, Ecker JR (2007) Mapping the genome landscape using tiling array technology. Curr Opin Plant Biol 10:534–542PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gregory BD, Yazaki J, Ecker JR (2008) Utilizing tiling microarrays for whole-genome analysis in plants. Plant J 53:636–644PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yamada K, Lim J, Dale JM et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chekanova JA, Gregory BD, Reverdatto SV et al (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131:1340–1353Google Scholar
  21. 21.
    MacIntosh GC, Wilkerson C, Green PJ (2001) Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol 127:765–776PubMedPubMedCentralGoogle Scholar
  22. 22.
    Marker C, Zemann A, Terhörst T et al (2002) Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 12:2002–2013PubMedPubMedCentralGoogle Scholar
  23. 23.
    Rymarquis LA, Kastenmayer JP, Hüttenhofer AG et al (2008) Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci 13:329–334PubMedPubMedCentralGoogle Scholar
  24. 24.
    Song D, Yang Y, Yu B et al (2009) Computational prediction of novel non-coding RNAs in Arabidopsis thaliana. BMC Bioinformatics 10(Suppl 1):S36PubMedPubMedCentralGoogle Scholar
  25. 25.
    Jouannet V, Crespi M (2011) Long nonprotein-coding RNAs in plants. Prog Mol Subcell Biol 51:179–200PubMedPubMedCentralGoogle Scholar
  26. 26.
    Velculescu VE, Zhang L, Vogelstein B et al (1995) Serial analysis of gene expression. Science 270:484–487PubMedPubMedCentralGoogle Scholar
  27. 27.
    Robinson SJ, Cram DJ, Lewis CT et al (2004) Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol 136:3223–3233PubMedPubMedCentralGoogle Scholar
  28. 28.
    Robinson SJ, Parkin IAP (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9:434PubMedPubMedCentralGoogle Scholar
  29. 29.
    Poole RL, Barker GLA, Werner K et al (2008) Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription. BMC Genomics 9:475PubMedPubMedCentralGoogle Scholar
  30. 30.
    Molina C, Rotter B, Horres R et al (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553PubMedPubMedCentralGoogle Scholar
  31. 31.
    Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634PubMedPubMedCentralGoogle Scholar
  32. 32.
    Meyers BC, Vu TH, Tej SS et al (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011PubMedPubMedCentralGoogle Scholar
  33. 33.
    Meyers BC, Tej SS, Vu TH et al (2004) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14:1641–1653PubMedPubMedCentralGoogle Scholar
  34. 34.
    Meyers BC, Lee DK, Vu TH et al (2004) Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol 135:801–813PubMedPubMedCentralGoogle Scholar
  35. 35.
    Quattro CD, Enrico Pè M, Bertolini E (2017) Long noncoding RNAs in the model species Brachypodium distachyon. Sci Rep 7:11252PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kodzius R, Kojima M, Nishiyori H et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222PubMedPubMedCentralGoogle Scholar
  37. 37.
    Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781PubMedPubMedCentralGoogle Scholar
  38. 38.
    Seki M, Carninci P, Nishiyama Y et al (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J 15:707–720Google Scholar
  39. 39.
    Mejia-Guerra MK, Li W, Galeano NF et al (2015) Core promoter plasticity between maize tissues and genotypes contrasts with predominance of sharp transcription initiation sites. Plant Cell 27:3309–3320PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cumbie JS, Ivanchenko MG, Megraw M (2015) NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites. BMC Genomics 16:597PubMedPubMedCentralGoogle Scholar
  41. 41.
    Takahashi H, Lassmann T, Murata M et al (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561PubMedPubMedCentralGoogle Scholar
  42. 42.
    Takahashi H, Kato S, Murata M et al (2012) CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. Methods Mol Biol 786:181–200PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedPubMedCentralGoogle Scholar
  44. 44.
    German MA, Pillay M, Jeong D-H et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946PubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhai J, Arikit S, Simon SA et al (2013) Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing. Methods 67(1):84–90PubMedPubMedCentralGoogle Scholar
  46. 46.
    Gregory BD, O'Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866PubMedPubMedCentralGoogle Scholar
  47. 47.
    Willmann MR, Berkowitz ND, Gregory BD (2014) Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes--GMUCT 2.0. Methods 67:64–73PubMedPubMedCentralGoogle Scholar
  48. 48.
    Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762PubMedPubMedCentralGoogle Scholar
  49. 49.
    Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131PubMedPubMedCentralGoogle Scholar
  50. 50.
    Pelechano V, Wei W, Steinmetz LM (2013) Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497:127–131PubMedPubMedCentralGoogle Scholar
  51. 51.
    Pelechano V, Wei W, Jakob P et al (2014) Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat Protoc 9:1740–1759PubMedPubMedCentralGoogle Scholar
  52. 52.
    Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hetzel J, Duttke SH, Benner C et al (2016) Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci 113:12316–12321PubMedPubMedCentralGoogle Scholar
  54. 54.
    Erhard KF, Talbot J-ERB, Deans NC et al (2015) Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 199:1107–1125PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gardini A (2017) Global Run-On Sequencing (GRO-Seq). Methods Mol Biol 1468:111–120PubMedPubMedCentralGoogle Scholar
  56. 56.
    Lopes R, Agami R, Korkmaz G (2017) GRO-seq, A tool for identification of transcripts regulating gene expression. Methods Mol Biol 1543:45–55PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kwak H, Fuda NJ, Core LJ et al (2013) Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339:950–953PubMedPubMedCentralGoogle Scholar
  58. 58.
    Mahat DB, Kwak H, Booth GT et al (2016) Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat Protoc 11:1455–1476PubMedPubMedCentralGoogle Scholar
  59. 59.
    Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469:368–373PubMedPubMedCentralGoogle Scholar
  60. 60.
    Larson MH, Mooney RA, Peters JM et al (2014) A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344:1042–1047PubMedPubMedCentralGoogle Scholar
  61. 61.
    Nojima T, Gomes T, Grosso ARF et al (2015) Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161:526–540PubMedPubMedCentralGoogle Scholar
  62. 62.
    Nojima T, Gomes T, Carmo-Fonseca M et al (2016) Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide. Nat Protoc 11:413–428PubMedPubMedCentralGoogle Scholar
  63. 63.
    Churchman LS, Weissman JS (2012) Native elongating transcript sequencing (NET-seq). Curr Protoc Mol Biol edited by Frederick M. Ausubel ... [et al.] Chapter 4:Unit 4.14.1–Unit 4.1417Google Scholar
  64. 64.
    Mayer A, Churchman LS (2016) Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 11:813–833PubMedPubMedCentralGoogle Scholar
  65. 65.
    Tani H, Mizutani R, Salam KA et al (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–956PubMedPubMedCentralGoogle Scholar
  66. 66.
    Yamada T, Imamachi N, Onoguchi-Mizutani R et al (2018) 5′-Bromouridine IP Chase (BRIC)-Seq to determine RNA half-lives. Methods Mol Biol 1720:1–13PubMedPubMedCentralGoogle Scholar
  67. 67.
    Imamachi N, Tani H, Mizutani R et al (2014) BRIC-seq: a genome-wide approach for determining RNA stability in mammalian cells. Methods 67:55–63PubMedPubMedCentralGoogle Scholar
  68. 68.
    Paulsen MT, Veloso A, Prasad J et al (2013) Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proc Natl Acad Sci 110:2240–2245PubMedPubMedCentralGoogle Scholar
  69. 69.
    Paulsen MT, Veloso A, Prasad J et al (2014) Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA. Methods 67(1):45–54PubMedPubMedCentralGoogle Scholar
  70. 70.
    Liu J, Jung C, Xu J et al (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345PubMedPubMedCentralGoogle Scholar
  71. 71.
    Adams MD, Kerlavage AR, Fleischmann RD et al (1995) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377:3–174PubMedPubMedCentralGoogle Scholar
  72. 72.
    Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502PubMedPubMedCentralGoogle Scholar
  73. 73.
    Nakamura M, Carninci P (2004) [Cap analysis gene expression: CAGE], Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 49, 2688–2693Google Scholar
  74. 74.
    Peiffer JA, Kaushik S, Sakai H et al (2008) A spatial dissection of the Arabidopsis floral transcriptome by MPSS. BMC Plant Biol 8:43PubMedPubMedCentralGoogle Scholar
  75. 75.
    Reinartz J, Bruyns E, Lin J-Z et al (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 1:95–104PubMedPubMedCentralGoogle Scholar
  76. 76.
    Carninci P, Kvam C, Kitamura A et al (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37:327–336PubMedPubMedCentralGoogle Scholar
  77. 77.
    Ni T, Corcoran DL, Rach EA et al (2010) A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7:521–527PubMedPubMedCentralGoogle Scholar
  78. 78.
    Morton T, Petricka J, Corcoran DL et al (2014) Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. Plant Cell 26:2746–2760PubMedPubMedCentralGoogle Scholar
  79. 79.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111PubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang H-LV, Chekanova JA (2016) Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. Wiley Interdiscip Rev RNA 7:356–381PubMedPubMedCentralGoogle Scholar
  81. 81.
    Nechaev S, Adelman K (2011) Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809:34–45PubMedPubMedCentralGoogle Scholar
  82. 82.
    Min IM, Waterfall JJ, Core LJ et al (2011) Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev 25:742–754PubMedPubMedCentralGoogle Scholar
  83. 83.
    Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293PubMedPubMedCentralGoogle Scholar
  84. 84.
    Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311PubMedPubMedCentralGoogle Scholar
  85. 85.
    Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274:998–1001Google Scholar
  86. 86.
    Kerk NM, Ceserani T, Tausta SL et al (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35PubMedPubMedCentralGoogle Scholar
  87. 87.
    Ohtsu K, Takahashi H, Schnable PS et al (2007) Cell type-specific gene expression profiling in plants by using a combination of laser microdissection and high-throughput technologies. Plant Cell Physiol 48:3–7PubMedPubMedCentralGoogle Scholar
  88. 88.
    Gautam V, Sarkar AK (2014) Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 57:299–308Google Scholar
  89. 89.
    Birnbaum K, Jung JW, Wang JY et al (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2:615–619PubMedPubMedCentralGoogle Scholar
  90. 90.
    Birnbaum K, Shasha DE, Wang JY et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960Google Scholar
  91. 91.
    Carter AD, Bonyadi R, Gifford ML (2013) The use of fluorescence-activated cell sorting in studying plant development and environmental responses. Int J Dev Biol 57:545–552PubMedPubMedCentralGoogle Scholar
  92. 92.
    Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18:1030–1040PubMedPubMedCentralGoogle Scholar
  93. 93.
    Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68PubMedPubMedCentralGoogle Scholar
  94. 94.
    Wang D, Deal RB (2015) Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq. Methods Mol Biol 1284:3–25PubMedPubMedCentralGoogle Scholar
  95. 95.
    Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792Google Scholar
  96. 96.
    Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458PubMedPubMedCentralGoogle Scholar
  97. 97.
    Sephton CF, Cenik C, Kucukural A et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286:1204–1215PubMedPubMedCentralGoogle Scholar
  98. 98.
    Xing D, Wang Y, Hamilton M et al (2015) Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell 27:3294–3308PubMedPubMedCentralGoogle Scholar
  99. 99.
    Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedPubMedCentralGoogle Scholar
  100. 100.
    Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307PubMedPubMedCentralGoogle Scholar
  101. 101.
    Carbonell A (2017) Immunoprecipitation and high-throughput sequencing of ARGONAUTE-bound target RNAs from plants. Methods Mol Biol 1640:93–112PubMedPubMedCentralGoogle Scholar
  102. 102.
    Cui X, Liang Z, Shen L et al (2017) 5-methylcytosine RNA methylation in Arabidopsis Thaliana. Mol Plant 10:1387–1399Google Scholar
  103. 103.
    Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedPubMedCentralGoogle Scholar
  104. 104.
    Wang T, Xiao G, Chu Y et al (2015) Design and bioinformatics analysis of genome-wide CLIP experiments. Nucleic Acids Res 43:5263–5274PubMedPubMedCentralGoogle Scholar
  105. 105.
    Haque N, Hogg JR (2016) Easier, better, faster, stronger: improved methods for RNA-protein interaction studies. Mol Cell 62:650–651PubMedPubMedCentralGoogle Scholar
  106. 106.
    Van Nostrand EL, Pratt GA, Shishkin AA et al (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514PubMedPubMedCentralGoogle Scholar
  107. 107.
    Zarnegar BJ, Flynn RA, Shen Y et al (2016) irCLIP platform for efficient characterization of protein-RNA interactions. Nat Methods 13:489–492PubMedPubMedCentralGoogle Scholar
  108. 108.
    Moore MJ, Zhang C, Gantman EC et al (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9:263–293PubMedPubMedCentralGoogle Scholar
  109. 109.
    König J, Zarnack K, Rot G et al (2011) iCLIP--transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp 50:e2638Google Scholar
  110. 110.
    Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedPubMedCentralGoogle Scholar
  111. 111.
    Ascano M, Hafner M, Cekan P et al (2012) Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA 3:159–177PubMedPubMedCentralGoogle Scholar
  112. 112.
    Garzia A, Meyer C, Morozov P et al (2017) Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods 118–119:24–40PubMedPubMedCentralGoogle Scholar
  113. 113.
    Hafner M, Lianoglou S, Tuschl T et al (2012) Genome-wide identification of miRNA targets by PAR-CLIP. Methods 58:94–105PubMedPubMedCentralGoogle Scholar
  114. 114.
    Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678PubMedPubMedCentralGoogle Scholar
  115. 115.
    Chu C, Zhang QC, da Rocha ST et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416PubMedPubMedCentralGoogle Scholar
  116. 116.
    Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912Google Scholar
  117. 117.
    Chu C, Chang HY (2016) Understanding RNA-Chromatin Interactions Using Chromatin Isolation by RNA Purification (ChIRP). Methods Mol Biol 1480:115–123PubMedPubMedCentralGoogle Scholar
  118. 118.
    Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973PubMedPubMedCentralGoogle Scholar
  119. 119.
    Engreitz J, Lander ES, Guttman M (2015) RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol Biol 1262:183–197PubMedPubMedCentralGoogle Scholar
  120. 120.
    Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci 108:20497–20502PubMedPubMedCentralGoogle Scholar
  121. 121.
    Simon MD, Pinter SF, Fang R et al (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–469PubMedPubMedCentralGoogle Scholar
  122. 122.
    Simon MD (2013) Capture hybridization analysis of RNA targets (CHART). Curr Protoc Mol Biol edited by Frederick M. Ausubel ... [et al.] Chapter 21:Unit 21.25PubMedPubMedCentralGoogle Scholar
  123. 123.
    Engreitz JM, Sirokman K, McDonel P et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 159:188–199PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci 108:10010–10015PubMedPubMedCentralGoogle Scholar
  125. 125.
    Helwak A, Kudla G, Dudnakova T et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665PubMedPubMedCentralGoogle Scholar
  126. 126.
    Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protoc 9:711–728PubMedPubMedCentralGoogle Scholar
  127. 127.
    Helwak A, Tollervey D (2016) Identification of miRNA-target RNA interactions using CLASH. Methods Mol Biol 1358:229–251PubMedPubMedCentralGoogle Scholar
  128. 128.
    Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068PubMedPubMedCentralGoogle Scholar
  129. 129.
    Watters KE, Yu AM, Strobel EJ et al (2016) Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods 103:34–48PubMedPubMedCentralGoogle Scholar
  130. 130.
    Mortimer SA, Trapnell C, Aviran S et al (2012) SHAPE-seq: high-throughput RNA structure analysis. Curr Protoc Chem Biol 4:275–297PubMedPubMedCentralGoogle Scholar
  131. 131.
    Ding Y, Tang Y, Kwok CK et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ritchey LE, Su Z, Tang Y et al (2017) Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res 45:e135–e135PubMedPubMedCentralGoogle Scholar
  133. 133.
    Tang Y, Bouvier E, Kwok CK et al (2015) StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics 31:2668–2675PubMedPubMedCentralGoogle Scholar
  134. 134.
    Tack DC, Tang Y, Ritchey LE et al (2018) StructureFold2: bringing chemical probing data into the computational fold of RNA structural analysis. Methods 143:12–15PubMedPubMedCentralGoogle Scholar
  135. 135.
    Ding Y, Kwok CK, Tang Y et al (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat Protoc 10:1050–1066PubMedPubMedCentralGoogle Scholar
  136. 136.
    Silverman IM, Li F, Alexander A et al (2014) RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol 15:R3PubMedPubMedCentralGoogle Scholar
  137. 137.
    Gosai SJ, Foley SW, Wang D et al (2015) Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell 57:376–388Google Scholar
  138. 138.
    Foley SW, Gregory BD (2016) Protein Interaction Profile Sequencing (PIP-seq). Curr Protoc Mol Biol. / edited by Frederick M. Ausubel ... [et al.] 116:27.5.1–27.5.15Google Scholar
  139. 139.
    Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107PubMedPubMedCentralGoogle Scholar
  140. 140.
    Wan Y, Qu K, Ouyang Z et al (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat Protoc 8:849–869PubMedPubMedCentralGoogle Scholar
  141. 141.
    Underwood JG, Uzilov AV, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001PubMedPubMedCentralGoogle Scholar
  142. 142.
    Uzilov AV, Underwood JG (2016) High-throughput nuclease probing of RNA structures using FragSeq. Methods Mol Biol 1490:105–134PubMedPubMedCentralGoogle Scholar
  143. 143.
    Lazof DB, GOLDSMITH JKG, RUFTY TW et al (2011) The preparation of cryosections from plant tissue: an alternative method appropriate for secondary ion mass spectrometry studies of nutrient tracers and trace metals. J Microsc 176:99–109Google Scholar
  144. 144.
    Kim E-D, Xiong Y, Pyo Y et al (2017) Spatio-temporal analysis of coding and long noncoding transcripts during maize endosperm development. Sci Rep 7:3838PubMedPubMedCentralGoogle Scholar
  145. 145.
    Barcala M, Fenoll C, Escobar C (2012) Laser microdissection of cells and isolation of high-quality RNA after cryosectioning. Methods Mol Biol 883:87–95PubMedPubMedCentralGoogle Scholar
  146. 146.
    Blokhina O, Valerio C, Sokołowska K et al (2016) Laser capture microdissection protocol for xylem tissues of woody plants. Front Plant Sci 7:1965PubMedPubMedCentralGoogle Scholar
  147. 147.
    Bevilacqua C, Ducos B (2018) Laser microdissection: a powerful tool for genomics at cell level. Mol Aspects Med 59:5–27PubMedPubMedCentralGoogle Scholar
  148. 148.
    Gautam V, Singh A, Singh S et al (2016) An efficient LCM-based method for tissue specific expression analysis of genes and miRNAs. Sci Rep 6:21577PubMedPubMedCentralGoogle Scholar
  149. 149.
    Nakazono M, Qiu F, Borsuk LA et al (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596PubMedPubMedCentralGoogle Scholar
  150. 150.
    Ohtsu K, Smith MB, Emrich SJ et al (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52:391–404PubMedPubMedCentralGoogle Scholar
  151. 151.
    Li S, Yamada M, Han X et al (2016) High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 39:508–522PubMedPubMedCentralGoogle Scholar
  152. 152.
    Ferrè F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17:106–116PubMedPubMedCentralGoogle Scholar
  153. 153.
    Wheeler EC, Van Nostrand EL, Yeo GW (2018) Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. Wiley Interdiscip Rev RNA 9:e1436Google Scholar
  154. 154.
    Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12:429–442PubMedPubMedCentralGoogle Scholar
  155. 155.
    Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M et al (2013) Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 8:176–189Google Scholar
  156. 156.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206PubMedPubMedCentralGoogle Scholar
  157. 157.
    Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033PubMedPubMedCentralGoogle Scholar
  158. 158.
    David R, Burgess A, Parker B et al (2017) Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell 29:445–460PubMedPubMedCentralGoogle Scholar
  159. 159.
    Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464PubMedPubMedCentralGoogle Scholar
  160. 160.
    Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215Google Scholar
  161. 161.
    Ule J, Jensen K, Mele A et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386Google Scholar
  162. 162.
    Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133PubMedPubMedCentralGoogle Scholar
  163. 163.
    Martianov I, Ramadass A, Serra Barros A et al (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670Google Scholar
  164. 164.
    Schmitz K-M, Mayer C, Postepska A et al (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269PubMedPubMedCentralGoogle Scholar
  165. 165.
    Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458PubMedPubMedCentralGoogle Scholar
  166. 166.
    Wang G, Chen H-W, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467PubMedPubMedCentralGoogle Scholar
  167. 167.
    Vandivier LE, Anderson SJ, Foley SW et al (2016) The conservation and function of RNA secondary structure in plants. Annu Rev Plant Biol 67:463–488PubMedPubMedCentralGoogle Scholar
  168. 168.
    Bevilacqua PC, Ritchey LE, Su Z et al (2016) Genome-wide analysis of RNA secondary structure. Annu Rev Genet 50:235–266PubMedPubMedCentralGoogle Scholar
  169. 169.
    Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655Google Scholar
  170. 170.
    Hawkes EJ, Hennelly SP, Novikova IV et al (2016) COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep 16:3087–3096Google Scholar
  171. 171.
    Merino EJ, Wilkinson KA, Coughlan JL et al (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231PubMedPubMedCentralGoogle Scholar
  172. 172.
    Watts JM, Dang KK, Gorelick RJ et al (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716PubMedPubMedCentralGoogle Scholar
  173. 173.
    Zaug AJ, Cech TR (1995) Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1:363–374PubMedPubMedCentralGoogle Scholar
  174. 174.
    Rouskin S, Zubradt M, Washietl S et al (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705PubMedPubMedCentralGoogle Scholar
  175. 175.
    Talkish J, May G, Lin Y et al (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–720PubMedPubMedCentralGoogle Scholar
  176. 176.
    Silverman IM, Gregory BD (2015) Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA-protein interaction sites. Methods 72:76–85PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hsiao-Lin V. Wang
    • 1
    • 2
  • Julia A. Chekanova
    • 1
  1. 1.Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
  2. 2.Present address: Department of BiologyEmory UniversityAtlantaUSA

Personalised recommendations