miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences

  • Ting Zhang
  • Lie Ju
  • Jingjing Zhai
  • Yujia Song
  • Jie Song
  • Chuang MaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)


microRNAs (miRNAs) are short, noncoding regulatory RNAs derived from hairpin precursors (pre-miRNAs). In synergy with experimental approaches, computational approaches have become an invaluable tool for identifying miRNAs at the genome scale. We have recently reported a method called miRLocator, which applies machine learning algorithms to accurately predict the localization of most likely miRNAs within their pre-miRNAs. One major strength of miRLocator is the fact that the machine learning-based miRNA prediction model can be automatically trained using a set of miRNAs of particular interest, with informative features extracted from miRNA-miRNA* duplexes and the optimized ratio between positive and negative samples. Here, we present a detailed protocol for miRLocator that performs the training and prediction processes using a python implementation and web interface. The source codes, web interface, and manual documents are freely available to academic users at

Key words

Machine learning miRNAs miRNA-miRNA* duplex Plant Pre-miRNA Prediction Random forest Secondary structure 



This work was supported by funding from the National Natural Science Foundation of China (31570371), the Youth 1000-Talent Program of China, the Hundred Talents Program of Shaanxi Province of China, the Projects of Youth Technology New Star of Shaanxi Province (2017KJXX-67), and the Fund of Northwest A & F University.


  1. 1.
    Li S, Castillo-Gonzalez C, Yu B, Zhang X (2017) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670CrossRefGoogle Scholar
  2. 2.
    Xie F, Jones DC, Wang Q, Sun R, Zhang B (2015) Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnol J 13:355–369CrossRefGoogle Scholar
  3. 3.
    Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305CrossRefGoogle Scholar
  4. 4.
    Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510CrossRefGoogle Scholar
  5. 5.
    Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687CrossRefGoogle Scholar
  6. 6.
    Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531CrossRefGoogle Scholar
  7. 7.
    Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524CrossRefGoogle Scholar
  8. 8.
    Chavez Montes RA, de Fatima Rosas-Cardenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722CrossRefGoogle Scholar
  9. 9.
    Wang ZM, Xue W, Dong CJ, Jin LG, Bian SM, Wang C, Wu XY, Liu JY (2012) A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules. Mol Plant 5:889–900CrossRefGoogle Scholar
  10. 10.
    Wu Y, Wei B, Liu H, Li T, Rayner S (2011) MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12:107CrossRefGoogle Scholar
  11. 11.
    Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res 41:7200–7211CrossRefGoogle Scholar
  12. 12.
    Tav C, Tempel S, Poligny L, Tahi F (2016) miRNAFold: a web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res 44:W181–W184CrossRefGoogle Scholar
  13. 13.
    Morgado L, Johannes F (2017) Computational tools for plant small RNA detection and categorization. Brief Bioinform.
  14. 14.
    Cui H, Zhai J, Ma C (2015) miRLocator: machine learning-based prediction of mature MicroRNAs within plant pre-miRNA sequences. PLoS One 10:e0142753CrossRefGoogle Scholar
  15. 15.
    Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26CrossRefGoogle Scholar
  16. 16.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144CrossRefGoogle Scholar
  17. 17.
    Szczesniak MW, Makalowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42:D74–D77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ting Zhang
    • 1
    • 2
  • Lie Ju
    • 3
  • Jingjing Zhai
    • 1
    • 2
  • Yujia Song
    • 3
  • Jie Song
    • 1
    • 4
  • Chuang Ma
    • 1
    • 2
    • 4
    Email author
  1. 1.State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life SciencesNorthwest A&F UniversityYanglingChina
  2. 2.Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of AgricultureNorthwest A&F UniversityYanglingChina
  3. 3.College of Information EngineeringNorthwest A&F UniversityYanglingChina
  4. 4.Biomass Energy Center for Arid and Semi-arid LandsNorthwest A&F UniversityYanglingChina

Personalised recommendations