In Situ Localization of Small RNAs in Plants

  • Cristina F. Marco
  • Damianos S. Skopelitis
  • Marja C. P. TimmermansEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)


Small RNAs have vital roles in numerous aspects of plant biology. Deciphering their precise contributions requires knowledge of a small RNA’s spatiotemporal pattern of accumulation. The in situ hybridization protocol described here takes advantage of locked nucleic acid (LNA) oligonucleotide probes to visualize small RNA expression at the cellular level with high sensitivity and specificity. The procedure is optimized for paraffin-embedded plant tissue sections, is applicable to a wide range of plants and tissues, and can be completed within 2–6 days.

Key words

Small RNA microRNA In situ hybridization Tissue specificity Plant development Cell-to-cell communication 



Damianos Skopelitis was supported by an HFSP long-term postdoctoral fellowship (LT000257/2009). Work on small RNA regulation in the Timmermans lab is supported by grants from the National Science Foundation (IOS-1355018), the Deutsche Forschungsgemeinschaft (SFB 1101 project C06), and an Alexander von Humboldt Professorship.


  1. 1.
    Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503CrossRefGoogle Scholar
  2. 2.
    Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741CrossRefGoogle Scholar
  3. 3.
    Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510CrossRefGoogle Scholar
  4. 4.
    Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309CrossRefGoogle Scholar
  5. 5.
    Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554CrossRefGoogle Scholar
  6. 6.
    Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313CrossRefGoogle Scholar
  7. 7.
    Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321CrossRefGoogle Scholar
  8. 8.
    Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A Protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132CrossRefGoogle Scholar
  9. 9.
    Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP (2017) Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev Cell 43:265–273CrossRefGoogle Scholar
  10. 10.
    Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242CrossRefGoogle Scholar
  11. 11.
    Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117CrossRefGoogle Scholar
  12. 12.
    Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield N, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27:3354–3366CrossRefGoogle Scholar
  13. 13.
    Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467:415–419CrossRefGoogle Scholar
  14. 14.
    Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563CrossRefGoogle Scholar
  15. 15.
    Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791CrossRefGoogle Scholar
  16. 16.
    Chuck G, Whipple C, Jackson D, Hake S (2010) The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137:1243–1250CrossRefGoogle Scholar
  17. 17.
    Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905CrossRefGoogle Scholar
  18. 18.
    Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88CrossRefGoogle Scholar
  19. 19.
    Jackson D (1991) In situ hybridization in plants. In: Bowles DJ, Gurr SJ, McPherson M (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 163–174Google Scholar
  20. 20.
    Javelle M, Marco CF, Timmermans M (2011) In situ hybridization for the precise localization of transcripts in plants. J Vis Exp 57:e3328Google Scholar
  21. 21.
    Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755CrossRefGoogle Scholar
  22. 22.
    Douglas RN, Wiley D, Sarkar A, Springer N, Timmermans MC, Scanlon MJ (2010) ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451CrossRefGoogle Scholar
  23. 23.
    Petsch K, Manzotti PS, Tam OH, Meeley R, Hammell M, Consonni G, Timmermans MC (2015) Novel DICER-LIKE1 siRNAs bypass the requirement for DICER-LIKE4 in Maize development. Plant Cell 27:2163–2177CrossRefGoogle Scholar
  24. 24.
    Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3:27–29CrossRefGoogle Scholar
  25. 25.
    Javelle M, Timmermans MCP (2012) In situ localization of small RNAs in plants by using LNA probes. Nat Protoc 7:533–541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cristina F. Marco
    • 1
  • Damianos S. Skopelitis
    • 1
  • Marja C. P. Timmermans
    • 1
    • 2
    Email author
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  2. 2.Center for Plant Molecular BiologyUniversity of TübingenTübingenGermany

Personalised recommendations