Advertisement

An Introduction to Methods for Discovery and Functional Analysis of MicroRNAs in Plants

  • Alma Armenta-Medina
  • C. Stewart GillmorEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)

Abstract

MicroRNAs play important roles in posttranscriptional regulation of plant development, metabolism, and abiotic stress responses. The recent generation of massive amounts of small RNA sequence data, along with development of bioinformatic tools to identify miRNAs and their mRNA targets, has led to an explosion of newly identified putative miRNAs in plants. Genome editing techniques like CRISPR-Cas9 will allow us to study the biological role of these potential novel miRNAs by efficiently targeting both the miRNA and its mRNA target. In this chapter, we review bioinformatic tools and experimental methods for the identification and functional characterization of miRNAs and their target mRNAs in plants.

Key words

MicroRNA miRNA RNA-Seq Target prediction Gene regulation CRISPR-Cas9 

Notes

Acknowledgments

Thanks to Cei Abreu-Goodger for comments on this manuscript. Research on miRNAs in the Gillmor laboratory is supported by grant CN-17-64 from the University of California Institute for Mexico and the United States (UC MEXUS) and the Consejo Nacional de Ciencia y Tecnología de México (CONACyT).

References

  1. 1.
    Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bulgakov VP, Avramenko TV (2015) New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol Lett 37:1719–1727PubMedCrossRefGoogle Scholar
  3. 3.
    Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203PubMedCrossRefGoogle Scholar
  4. 4.
    Yu Y, Jia T, Chen X (2017) The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–1017PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Park W, Li J, Song R et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedCrossRefGoogle Scholar
  7. 7.
    Yang L, Liu Z, Lu F et al (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850PubMedCrossRefGoogle Scholar
  8. 8.
    Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chávez Montes RAC, Rosas-Cárdenas FF, De Paoli E et al (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722PubMedCrossRefGoogle Scholar
  13. 13.
    You C, Cui J, Wang H et al (2017) Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biol 18:158PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942PubMedGoogle Scholar
  16. 16.
    McConnell JR, Emery J, Eshed Y et al (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713PubMedCrossRefGoogle Scholar
  17. 17.
    Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefGoogle Scholar
  19. 19.
    Emery JF, Floyd SK, Alvarez J et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774PubMedCrossRefGoogle Scholar
  20. 20.
    Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lu C, Tej SS, Luo S et al (2005) Elucidation of the small RNA component of the transcriptome. Science 309:1567–1569PubMedCrossRefGoogle Scholar
  23. 23.
    Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedCrossRefGoogle Scholar
  24. 24.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedCrossRefGoogle Scholar
  25. 25.
    Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  26. 26.
    Wang X, Zhang J, Li F et al (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610–3614PubMedCrossRefGoogle Scholar
  27. 27.
    Adai A, Johnson C, Mlotshwa S et al (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Moxon S, Schwach F, Dalmay T et al (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253PubMedCrossRefGoogle Scholar
  29. 29.
    Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Williams PH, Eyles R, Weiller G (2012) Plant MicroRNA prediction by supervised machine learning using C5.0 decision trees. J Nucleic Acids 2012:652979PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Xuan P, Guo M, Huang Y et al (2011) MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs. PLoS One 6:e27422PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cui H, Zhai J, Ma C (2015) miRLocator: machine learning-based prediction of mature MicroRNAs within plant Pre-miRNA sequences. PLoS One 10:e0142753PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hackenberg M, Sturm M, Langenberger D et al (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26:2226–2234PubMedCrossRefGoogle Scholar
  35. 35.
    Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615PubMedCrossRefGoogle Scholar
  36. 36.
    Breakfield NW, Corcoran DL, Petricka JJ et al (2012) High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22:163–176PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lee J, Kim D-I, Park JH et al (2013) MiRAuto: an automated user-friendly microRNA prediction tool utilizing plant small RNA sequencing data. Mol Cells 35:342–347PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    An J, Lai J, Sajjanhar A et al (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 15:275PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30:2837–2839PubMedCrossRefGoogle Scholar
  40. 40.
    Higashi S, Fournier C, Gautier C et al (2015) Mirinho: An efficient and general plant and animal pre-miRNA predictor for genomic and deep sequencing data. BMC Bioinformatics 16:179PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Evers M, Huttner M, Dueck A et al (2015) miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformatics 16:370PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Paicu C, Mohorianu I, Stocks M et al (2017) miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 33:2446–2454PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs-the overlooked repertoire in the dynamic microRNAome. Trends Genet 28:544–549CrossRefGoogle Scholar
  44. 44.
    Muller H, Marzi MJ, Nicassio F (2014) IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol 2:38PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhang Y, Zang Q, Zhang H et al (2016) DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 44:W166–W175PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yang K, Sablok G, Qiao G et al (2017) isomiR2Function: an integrated workflow for identifying MicroRNA variants in plants. Front Plant Sci 8:322PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang Y, Zang Q, Xu B et al (2016) IsomiR bank: a research resource for tracking IsomiRs. Bioinformatics 32:2069–2071PubMedCrossRefGoogle Scholar
  48. 48.
    Lepe-Soltero D, Armenta-Medina A, Xiang D et al (2017) Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana. Data Brief 15:642–647PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568PubMedCrossRefGoogle Scholar
  50. 50.
    Xie F, Zhang B (2010) Target-align: a tool for plant microRNA target identification. Bioinformatics 26:3002–3003PubMedCrossRefGoogle Scholar
  51. 51.
    Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jha A, Shankar R (2011) Employing machine learning for reliable miRNA target identification in plants. BMC Genomics 12:636PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wu H-J, Ma Y-K, Chen T et al (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131PubMedCrossRefGoogle Scholar
  56. 56.
    Zheng Y, Li Y-F, Sunkar R, Zhang W (2012) SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40:e28–e28PubMedCrossRefGoogle Scholar
  57. 57.
    Li F, Orban R, Baker B (2012) SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70:891–901PubMedCrossRefGoogle Scholar
  58. 58.
    Hsu S-D, Lin F-M, Wu W-Y et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169PubMedCrossRefGoogle Scholar
  59. 59.
    Chou C-H, Shrestha S, Yang C-D et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302PubMedCrossRefGoogle Scholar
  60. 60.
    Li J, Millar AA (2013) Expression of a microRNA-resistant target transgene misrepresents the functional significance of the endogenous microRNA: target gene relationship. Mol Plant 6:577–580PubMedCrossRefGoogle Scholar
  61. 61.
    Ghosh Dastidar M, Mosiolek M, Bleckmann A et al (2016) Sensitive whole mount in situ localization of small RNAs in plants. Plant J 88:694–702PubMedCrossRefGoogle Scholar
  62. 62.
    Bleckmann A, Dresselhaus T (2016) Fluorescent whole-mount RNA in situ hybridization (F-WISH) in plant germ cells and the fertilized ovule. Methods 98:66–73PubMedCrossRefGoogle Scholar
  63. 63.
    Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037CrossRefGoogle Scholar
  64. 64.
    Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yan J, Gu Y, Jia X et al (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24:415–427PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Meth 4:721–726CrossRefGoogle Scholar
  68. 68.
    Reichel M, Li Y, Li J, Millar AA (2015) Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J 13:915–926PubMedCrossRefGoogle Scholar
  69. 69.
    Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  70. 70.
    Henikoff S, Till BJ, Comai L (2004) TILLING Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Silva NVE, Patron NJ (2017) CRISPR-based tools for plant genome engineering. Emerg Topics Life Sci 1:ETLS20170011 149Google Scholar
  72. 72.
    Demirci Y, Zhang B, Unver T (2018) CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. J Cell Physiol 233:1844–1859PubMedCrossRefGoogle Scholar
  73. 73.
    Zhao Y, Zhang C, Liu W et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zhou J, Deng K, Cheng Y et al (2017) CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function and regulation in rice. Front Plant Sci 8:1598PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wang Z-P, Xing H-L, Dong L et al (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico

Personalised recommendations