Three-Dimensional Structured Illumination Microscopy (3D-SIM) to Dissect Signaling Cross-Talks in Motile T-Cells

  • Seow Theng OngEmail author
  • Graham D. Wright
  • Navin Kumar Verma
Part of the Methods in Molecular Biology book series (MIMB, volume 1930)


Visualization of signal transduction events in T-cells has always been a challenge due to their miniscule size. Recent advancement in super-resolution microscopy techniques presents many new opportunities to navigate the spatial and temporal signaling cross-talks in motile T-cells. Here, we provide technical details, optimal conditions, and critical practical considerations that need to be taken into account during cell handling, sample preparation, and image acquisition of motile T-cells for performing three-dimensional structured illumination microscopy (3D-SIM).

Key words

Super-resolution microscopy 3D-SIM Immunostaining 



This work was supported in part by grants from Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Start-Up Grant and the Ministry of Education Singapore under its Singapore Ministry of Education Academic Research Fund (AcRF) Tier 2 Grant (MOE2017-T2-2-004) to N.K.V. 3D-SIM platform (DeltaVision OMX v4 Blaze microscope) and Institute of Medical Biology (IMB) Microscopy Unit, now renamed to the A*STAR Microscopy Platform within the Skin Research Institute of Singapore (SRIS), was funded by A*STAR, Singapore.


  1. 1.
    Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87CrossRefGoogle Scholar
  2. 2.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  3. 3.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795CrossRefGoogle Scholar
  4. 4.
    Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Edn 47:6172–6176CrossRefGoogle Scholar
  5. 5.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782CrossRefGoogle Scholar
  6. 6.
    Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3:144–147CrossRefGoogle Scholar
  7. 7.
    Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970CrossRefGoogle Scholar
  8. 8.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  9. 9.
    Verma NK, Dempsey E, Long A, Davies A, Barry SP, Fallon PG, Volkov Y, Kelleher D (2012) Leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction induces a novel genetic signature resulting in T-cells refractory to transforming growth factor-beta signaling. J Biol Chem 287(32):27204–27216CrossRefGoogle Scholar
  10. 10.
    Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915CrossRefGoogle Scholar
  11. 11.
    Xie W, Horn HF, Wright GD (2016) Superresolution microscopy of the nuclear envelope and associated proteins. Methods Mol Biol 1411:83–97CrossRefGoogle Scholar
  12. 12.
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336CrossRefGoogle Scholar
  13. 13.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175CrossRefGoogle Scholar
  14. 14.
    Volkov Y, Long A, McGrath S, Ni Eidhin D, Kelleher D (2001) Crucial importance of PKC-beta(I) in LFA-1-mediated locomotion of activated T cells. Nat Immunol 2:508–514CrossRefGoogle Scholar
  15. 15.
    Ong ST, Freeley M, Skubis-Zegadło J, Turabe Fazil MH, Kelleher D, Fresser F, Baier G, Verma NK, Long A (2014) Phosphorylation of rab5a by PKCε is crucial for T-cell migration. J Biol Chem 289(28):19420–19434CrossRefGoogle Scholar
  16. 16.
    Whelan DR, Bell TD (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Seow Theng Ong
    • 1
    Email author
  • Graham D. Wright
    • 2
  • Navin Kumar Verma
    • 3
  1. 1.Lymphocyte Signalling Research Laboratory, Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
  2. 2.A*STAR Microscopy PlatformSkin Research Institute of SingaporeSingaporeSingapore
  3. 3.Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore

Personalised recommendations