Advertisement

An Introduction to LFA-1/ICAM-1 Interactions in T-Cell Motility

  • Navin Kumar VermaEmail author
  • Dermot Kelleher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1930)

Abstract

The inherent ability of T-cells to migrate is critical for a fully functional immune system, both in normal immune surveillance and for mounting an adaptive immune response. At the same time, inappropriate trafficking of T-cells can be a pathological factor for immune-mediated or chronic inflammatory diseases. T-cell motility is critically dependent on a series of ligand–receptor interactions, a precisely regulated intracellular signaling, an involvement of adaptor proteins, and dynamic remodeling of the cytoskeletal systems. The leukocyte integrin LFA-1 receptor present on T-cells binds to the ligand intercellular adhesion molecule 1 (ICAM-1) and this LFA-1/ICAM-1 contact acts as a trigger for T-cell motility. In this book, we present a collection of methods and protocols that are frequently used by researchers to better understand T-cell motility in health and diseases.

Key words

T-cell contact Integrin Signal transduction Inflammation Autoimmunity 

Notes

Acknowledgments

This work was supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Start-Up Grant and the Singapore Ministry of Education (MOE) under its Singapore MOE Academic Research Fund (AcRF) Tier 2 Grant (MOE2017-T2-2-004) to N.K.V.

References

  1. 1.
    Bradley LM (2003) Migration and T-lymphocyte effector function. Curr Opin Immunol 15:343–348CrossRefGoogle Scholar
  2. 2.
    Salmi M, Jalkanen S (2005) Lymphocyte homing to the gut. Attraction, adhesion, and commitment. Immunol Rev 206:100–113CrossRefGoogle Scholar
  3. 3.
    Mora JR, von Andrian UH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27:235–235CrossRefGoogle Scholar
  4. 4.
    Woodland DL, Kohlmeier JE (2009) Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol 9:153–161CrossRefGoogle Scholar
  5. 5.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689CrossRefGoogle Scholar
  6. 6.
    Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S, Martinez AC (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98:9642–9647CrossRefGoogle Scholar
  7. 7.
    Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. EMBO J 18:501–511CrossRefGoogle Scholar
  8. 8.
    Evans R, Patzak I, Svensson L, Filippo KD, Jones K, McDowall A, Hogg N (2009) Integrins in immunity. J Cell Sci 122:215–225CrossRefGoogle Scholar
  9. 9.
    Hogg N, Laschinger M, Giles K, McDowall A (2003) T-cell integrins: more than just sticking points. J Cell Sci 116:4695–4705CrossRefGoogle Scholar
  10. 10.
    Morin NA, Oakes PW, Hyun YM, Lee D, Chin YE, King MR, Springer TA, Shimaoka M, Tang JX, Reichner JS, Kim M (2008) Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J Exp Med 205:195–205CrossRefGoogle Scholar
  11. 11.
    von Andrian UH, Mackay CR (2000) T-cell function and migration—two sides of the same coin. N Engl J Med 343:1020–1034CrossRefGoogle Scholar
  12. 12.
    Shimizu Y (2003) LFA-1: more than just T cell velcro. Nat Immunol 4:1052–1054CrossRefGoogle Scholar
  13. 13.
    Lub M, van Kooyk Y, Figdor CG (1995) Ins and outs of LFA-1. Immunol Today 16:479–483CrossRefGoogle Scholar
  14. 14.
    Ebert LM, Schaerli P, Moser B (2005) Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 42:799–809CrossRefGoogle Scholar
  15. 15.
    Denucci CC, Mitchell JS, Shimizu Y (2009) Integrin function in T-cell homing to lymphoid and nonlymphoid sites: getting there and staying there. Crit Rev Immunol 29:87–109CrossRefGoogle Scholar
  16. 16.
    Calderwood DA, Campbell ID, Critchley DR (2013) Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 14:503–517CrossRefGoogle Scholar
  17. 17.
    Long A, Freeley M (2014) Protein kinase C: a regulator of cytoskeleton remodelling and T-cell migration. Biochem Soc Trans 42:1490–1497CrossRefGoogle Scholar
  18. 18.
    Volkov Y, Long A, McGrath S, Ni Eidhin D, Kelleher D (2001) Crucial importance of PKC-β(I) in LFA-1-mediated locomotion of activated T cells. Nat Immunol 2:508–514CrossRefGoogle Scholar
  19. 19.
    Vasiliev JM, Gelfand IM, Domnina LV, Ivanova OY, Komm SG, Olshevskaja LV (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morpholog 24:625–640Google Scholar
  20. 20.
    Samstag Y, Eibert SM, Klemke M, Wabnitz GH (2003) Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 73:30–48CrossRefGoogle Scholar
  21. 21.
    Moissoglu K, Schwartz MA (2006) Integrin signalling in directed cell migration. Biol Cell 98:547–555CrossRefGoogle Scholar
  22. 22.
    Small JV, Kaverina I (2003) Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15:40–47CrossRefGoogle Scholar
  23. 23.
    Verma NK, Kelleher D (2016) Adaptor regulation of LFA-1 signaling in T lymphocyte migration: potential druggable targets for immunotherapies? Eur J Immunol 44:3484–3499CrossRefGoogle Scholar
  24. 24.
    Sun Z, Guo SS, Fässler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215:445–456CrossRefGoogle Scholar
  25. 25.
    Etienne-Manneville S (2004) Actin and microtubules in cell motility: which one is in control? Traffic 5:470–477CrossRefGoogle Scholar
  26. 26.
    Dupré L, Houmadi R, Tang C, Rey-Barroso J (2015) T lymphocyte migration: an action movie starring the actin and associated actors. Front Immunol 6:586CrossRefGoogle Scholar
  27. 27.
    Kumari S, Curado S, Mayya V, Dustin ML (2014) T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim Biophys Acta 1838:546–556CrossRefGoogle Scholar
  28. 28.
    Ong ST, Chalasani MLS, Fazil MHUT, Praseetha P, Kizhakeyil A, Wright GD, Kelleher D, Verma NK (2018) Centrosome- and Golgi-localized protein kinase N-associated protein serves as a docking platform for protein kinase A signaling and microtubule nucleation in migrating T cells. Front Immunol 9:1–16CrossRefGoogle Scholar
  29. 29.
    Walling BL, Kim M (2018) LFA-1 in T cell migration and differentiation. Front Immunol 9:952CrossRefGoogle Scholar
  30. 30.
    Verma NK, Dempsey E, Conroy J, Olwell P, Mcelligot AM, Davis AM, Kelleher D, Butini S, Campiani G, Williams DC, Zisterer DM, Lawler M, Volkov Y (2008) A new microtubule targeting compound PBOX-15 inhibits T-cell migration via post-translational modification of tubulin. J Mol Med 86:457–469CrossRefGoogle Scholar
  31. 31.
    Hui KL, Upadhyaya A (2017) Dynamic microtubules regulate cellular contractility during T-cell activation. Proc Natl Acad Sci U S A 114:E4175–E4183CrossRefGoogle Scholar
  32. 32.
    Gundersen GG, Cook TA (1999) Microtubules and signal transduction. Curr Opin Cell Biol 11:81–94CrossRefGoogle Scholar
  33. 33.
    Li D, Rebecca P, Cruz MA, Molldrem JJ, Champlin RE, Ma Q (2015) Intermediate filament (IF) protein vimentin regulates T cell mediated immune response in Gvhd. Blood 126:3073Google Scholar
  34. 34.
    Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8:156–162CrossRefGoogle Scholar
  35. 35.
    van den Boorn J, Caroline Le Poole I, Luiten RT (2006) Cell avidity and tuning. the flexible connection between tolerance and autoimmunity. Int Rev Immunol 25:235–258CrossRefGoogle Scholar
  36. 36.
    Mellor AL, Munn DH (2006) Immune privilege: a recurrent theme in immunoregulation? Immunol Rev 213:5–11CrossRefGoogle Scholar
  37. 37.
    Christen U, von Herrath MG (2005) Infections and autoimmunity—good or bad? J Immunol 174:7481–7486CrossRefGoogle Scholar
  38. 38.
    Zehn D, Bevan MJ (2006) T Cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25:261–270CrossRefGoogle Scholar
  39. 39.
    Campbell JJ, Brightling CE, Symon FA, Qin S, Murphy KE, Hodge M, Andrew DP, Wu L, Butcher EC, Wardlaw AJ (2001) Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J Immunol 166:2842–2848CrossRefGoogle Scholar
  40. 40.
    Gottlieb AB (2005) Psoriasis: emerging therapeutic strategies. Nat Rev Drug Discov 4:19–34CrossRefGoogle Scholar
  41. 41.
    Lebwohl M, Tyring SK, Hamilton TK, Toth D, Glazer S, Tawfik NH, Walicke P, Dummer W, Wang X, Garovoy MR, Pariser D (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 349:2004–2013CrossRefGoogle Scholar
  42. 42.
    Menter A, Gordon K, Carey W, Hamilton T, Glazer S, Caro I, Li N, Gulliver W (2005) Efficacy and safety observed during 24 weeks of efalizumab therapy in patients with moderate to severe plaque psoriasis. Arch Dermatol 141:31–38CrossRefGoogle Scholar
  43. 43.
    Molloy ES, Calabrese LH (2009) Therapy: targeted but not trouble-free: efalizumab and PML. Nat Rev Rheumatol 5418:419Google Scholar
  44. 44.
    Carson KR, Focosi D, Major EO, Petrini M, Richey EA, West DP, Bennett CL (2009) Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a Review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol 10:816–824CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
  2. 2.Lymphocyte Signalling Research Laboratory, Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
  3. 3.Departments of Medicine and Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations