Advertisement

Quantification of Human Swiprosin-1/EFhd2 Expression on Protein and RNA Level

  • Barbara G. Fürnrohr
  • Dirk MielenzEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)

Abstract

Many Ca2+-binding proteins are differentially regulated under pro-inflammatory conditions in different organs. Specific quantification of RNA and protein expression of those proteins demands validated protocols. Peripheral blood mononuclear cells (PBMC) can mirror an inflammatory status originating from several organs and can therefore be an important diagnostic tool. Swiprosin-1/EFhd2 (EFhd2) is a ~30 kDa Ca2+ and F-actin binding, cytoskeletal protein with two central EF hands and a C-terminal coiled-coil domain. Unbiased gene expression analyses and proteomics revealed that EFhd2 is regulated under pro-inflammatory conditions in several cell types and tissues. Here we describe validated protocols to quantify the expression of the human orthologue of Swiprosin-1/EFhd2 on RNA and protein level in PBMC. Both methods reveal that EFhd2 is stronger expressed in monocytes than in B cells of healthy donors. Thus, initial experiments relying on qPCR are likely to provide results with functional relevance. The higher expression of EFhd2 in monocytes could be related to monocyte migration under inflammatory conditions.

Key words

Alcohol Anxiety B cell Flow cytometry Inflammation Neurodegeneration Neuroninflammation Peripheral blood mononuclear cell qPCR Swiprosin-1/EFhd2 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; TRR130, to D.M.)

References

  1. 1.
    Purohit P, Perez-Branguli F, Prots I, Borger E, Gunn-Moore F, Welzel O, Loy K, Wenzel EM, Grömer TW, Brachs S, Holzer M, Buslei R, Fritsch K, Regensburger M, Böhm KJ, Winner B, Mielenz D (2014) The Ca2+ sensor protein swiprosin-1/EFhd2 is present in neurites and involved in kinesin-mediated transport in neurons. PLoS One 9:e103976.  https://doi.org/10.1371/journal.pone.0103976CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kwon MS, Park KR, Kim YD, Na BR, Kim HR, Choi HJ, Piragyte I, Jeon H, Chung KH, Song WK, Eom SH, Jun CD (2013) Swiprosin-1 is a novel actin bundling protein that regulates cell spreading and migration. PLoS One 8:e71626.  https://doi.org/10.1371/journal.pone.0071626CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brachs S, Turqueti-Neves A, Stein M, Reimer D, Brachvogel B, Bösl M, Winkler T, Voehringer D, Jäck H-M, Mielenz D (2014) Swiprosin-1/EFhd2 limits germinal center responses and humoral type 2 immunity. Eur J Immunol 44:3206–3219.  https://doi.org/10.1002/eji.201444479CrossRefPubMedGoogle Scholar
  4. 4.
    Mielenz D, Gunn-Moore F (2016) Physiological and pathophysiological functions of Swiprosin-1/EFhd2 in the nervous system. Biochem J 473:2429–2437.  https://doi.org/10.1042/BCJ20160168CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mielenz D, Reichel M, Jia T, Quinlan EB, Stöckl T, Mettang M, Zilske D, Kirmizi-Alsan E, Schönberger P, Praetner M, Huber SE, Amato D, Schwarz M, Purohit P, Brachs S, Spranger J, Hess A, Büttner C, Ekici AB, Perez-Branguli F, Winner B, Rauschenberger V, Banaschewski T, Bokde ALW, Büchel C, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Garavan H, Gowland P, Heinz A, Martinot JL, Lemaitre H, Nees F, Paus T, Smolka MN, Schambony A, Bäuerle T, Eulenburg V, Alzheimer C, Lourdusamy A, Schumann G, Müller CP (2018) EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry 23(5):1303–1319.  https://doi.org/10.1038/mp.2017.63 Epub 2017 Apr 11CrossRefPubMedGoogle Scholar
  6. 6.
    Wendeln A-C, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, Wagner J, Häsler LM, Wild K, Skodras A, Blank T, Staszewski O, Datta M, Centeno TP, Capece V, Islam MR, Kerimoglu C, Staufenbiel M, Schultze JL, Beyer M, Prinz M, Jucker M, Fischer A, Neher JJ (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–338.  https://doi.org/10.1038/s41586-018-0023-4CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dotzlaw H, Schulz M, Eggert M, Neeck GA (2004) Pattern of protein expression in peripheral blood mononuclear cells distinguishes rheumatoid arthritis patients from healthy individuals. Biochim Biophys Acta 1696:121–129.  https://doi.org/10.1016/j.bbapap.2003.09.015CrossRefPubMedGoogle Scholar
  8. 8.
    Borger E, Herrmann A, Mann DA, Spires-Jones T, Gunn-Moore F (2014) The calcium-binding protein EFhd2 modulates synapse formation in vitro and is linked to human dementia. J Neuropathol Exp Neurol 73:1166–1182.  https://doi.org/10.1097/NEN.0000000000000138CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Comabella M, Cantó E, Nurtdinov R, Río J, Villar LM, Picón C, Castilló J, Fissolo N, Aymerich X, Auger C, Rovira A, Montalban X (2016) MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes. Hum Mol Genet 25:308–316.  https://doi.org/10.1093/hmg/ddv473CrossRefPubMedGoogle Scholar
  10. 10.
    Lang SC, Harre U, Purohit P, Dietel K, Kienhöfer D, Hahn J, Baum W, Herrmann M, Schett G, Mielenz D (2017) Neurodegeneration enhances the development of arthritis. J Immunol 198:2394–2402.  https://doi.org/10.4049/jimmunol.1601472CrossRefPubMedGoogle Scholar
  11. 11.
    Schulz M, Dotzlaw H, Mikkat S, Eggert M, Neeck G (2007) Proteomic analysis of peripheral blood mononuclear cells: selective protein processing observed in patients with rheumatoid arthritis. J Proteome Res 6:3752–3759.  https://doi.org/10.1021/pr070285fCrossRefPubMedGoogle Scholar
  12. 12.
    Zhang S, Tu Y, Sun YM, Li Y, Wang RM, Cao Y, Li L, Zhang LC, Wang ZB (2018) Swiprosin-1 deficiency impairs macrophage immune response of septic mice. JCI Insight 3.  https://doi.org/10.1172/jci.insight.95396
  13. 13.
    Brachs S, Lang C, Buslei R, Purohit P, Fürnrohr B, Kalbacher H, Jäck HM, Mielenz D (2013) Monoclonal antibodies to discriminate the EF hand containing calcium binding adaptor proteins EFhd1 and EFhd2. Monoclon Antib Immunodiagn Immunother 32:237–245.  https://doi.org/10.1089/mab.2013.0014CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hagen S, Brachs S, Kroczek C, Fürnrohr BG, Lang C, Mielenz D (2012) The B cell receptor-induced calcium flux involves a calcium mediated positive feedback loop. Cell Calcium 51:411–417.  https://doi.org/10.1016/j.ceca.2012.01.004CrossRefPubMedGoogle Scholar
  15. 15.
    Avramidou A, Kroczek C, Lang C, Schuh W, Jäck H-M, Mielenz D (2007) The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Differ 14:1936–1947.  https://doi.org/10.1038/sj.cdd.4402206CrossRefPubMedGoogle Scholar
  16. 16.
    Green MR, Sambrook J (2014) Molecular cloning, 3rd edn. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  17. 17.
    Fürnrohr BG, Rhodes B, Munoz LE, Weiß K, Vyse TJ, Schett G (2015) Osteoclast differentiation is impaired in a subgroup of SLE patients and correlates inversely with mycophenolate mofetil treatment. Int J Mol Sci 16:18825–18835.  https://doi.org/10.3390/ijms160818825CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rhodes B, Fürnrohr BG, Roberts AL, Tzircotis G, Schett G, Spector TD, Vyse TJ (2012) The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann Rheum Dis 71:2028–2034.  https://doi.org/10.1136/annrheumdis-2012-201390CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Molecular immunology, Department of Internal Medicine IIINikolaus-Fiebiger-Center, University of Erlangen-NürnbergErlangenGermany

Personalised recommendations