Structural Analysis of S100A8 Complex with Zinc and Calcium: A General Protocol for the Study of S100 Proteins in the Presence of Divalent Cations by X-Ray Crystallography

  • Laure YatimeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)


Ions are important regulators for the cellular function of many proteins. This holds particularly true for S100 proteins whose function is not only calcium-dependent but also appears to be modulated by other divalent cations such as zinc, manganese, or copper. One way ions are thought to influence the function of S100 proteins (and any protein in general) is by changing their three-dimensional organization, through modifications in either their monomeric shape, their oligomeric state, or both. X-ray crystallography is a very powerful technique to study the effect of ions on the 3D architecture of macromolecules since it gives a direct visualization of where ions bind and how the protein structure is affected upon ion binding. Taking the example of human S100A8, I describe here the complete procedure to obtain a highly pure and homogenous S100 protein sample, crystallize it in the presence of divalent cations, and derive a 3D structural model from diffraction images. I further detail computational methods used to determine precisely the nature and position of the divalent cations within S100A8 structure. This methodology can easily be applied to any ion-binding protein, provided that the ion anomalous scattering properties allow to identify it unambiguously.

Key words

S100 proteins Divalent cations Oligomerization Chromatography X-ray crystallography Protein 3D structure Anomalous scattering 


  1. 1.
    Schafer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140CrossRefGoogle Scholar
  2. 2.
    Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ et al (2013) Functions of S100 proteins. Curr Mol Med 13:24–57CrossRefGoogle Scholar
  3. 3.
    Calissano P, Moore BW, Friesen A (1969) Effect of calcium ion on S-100, a protein of the nervous system. Biochemistry 8:4318–4326CrossRefGoogle Scholar
  4. 4.
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214CrossRefGoogle Scholar
  5. 5.
    Baudier J, Gerard D (1983) Ions binding to S100 proteins: structural changes induced by calcium and zinc on S100a and S100b proteins. Biochemistry 22:3360–3369CrossRefGoogle Scholar
  6. 6.
    Gilston BA, Skaar EP, Chazin WJ (2016) Binding of transition metals to S100 proteins. Sci China Life Sci 59:792–801CrossRefGoogle Scholar
  7. 7.
    Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family. Biometals 11:383–397CrossRefGoogle Scholar
  8. 8.
    Zackular JP, Chazin WJ, Skaar EP (2015) Nutritional immunity: S100 proteins at the host-pathogen interface. J Biol Chem 290:18991–18998CrossRefGoogle Scholar
  9. 9.
    Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, Murphy WJ et al (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A 110:3841–3846CrossRefGoogle Scholar
  10. 10.
    Koch M, Bhattacharya S, Kehl T, Gimona M, Vasak M, Chazin W et al (2007) Implications on zinc binding to S100A2. Biochim Biophys Acta 1773:457–470CrossRefGoogle Scholar
  11. 11.
    Yanamandra K, Alexeyev O, Zamotin V, Srivastava V, Shchukarev A, Brorsson AC et al (2009) Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PLoS One 4:e5562CrossRefGoogle Scholar
  12. 12.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277:4578–4590CrossRefGoogle Scholar
  13. 13.
    Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB (2009) The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. J Mol Biol 391:536–551CrossRefGoogle Scholar
  14. 14.
    Lin H, Andersen GR, Yatime L (2016) Crystal structure of human S100A8 in complex with zinc and calcium. BMC Struct Biol 16:8CrossRefGoogle Scholar
  15. 15.
    Baudier J, Glasser N, Gerard D (1986) Ions binding to S100 proteins. 1. Calcium-binding and zinc-binding properties of bovine brain S100-alpha-alpha, S100a-(alpha,beta), and S100b-(beta-beta), protein – Zn-2+ regulates Ca-2+ binding on S100b protein. J Biol Chem 261:8192–8203PubMedGoogle Scholar
  16. 16.
    Kerkhoff C, Vogl T, Nacken W, Sopalla C, Sorg C (1999) Zinc binding reverses the calcium-induced arachidonic acid-binding capacity of the S100A8/A9 protein complex. FEBS Lett 460:134–138CrossRefGoogle Scholar
  17. 17.
    Moroz OV, Burkitt W, Wittkowski H, He W, Ianoul A, Novitskaya V et al (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10:11CrossRefGoogle Scholar
  18. 18.
    Leclerc E, Fritz G, Vetter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007CrossRefGoogle Scholar
  19. 19.
    Bjork P, Bjork A, Vogl T, Stenstrom M, Liberg D, Olsson A et al (2009) Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol 7:e97CrossRefGoogle Scholar
  20. 20.
    Yatime L, Betzer C, Jensen RK, Mortensen S, Jensen PH, Andersen GR (2016) The structure of the RAGE:S100A6 complex reveals a unique mode of homodimerization for S100 proteins. Structure 24:2043–2052CrossRefGoogle Scholar
  21. 21.
    Rossmann MG, Blow DM (1962) Detection of sub-units within crystallographic asymmetric unit. Acta Crystallogr D Biol Crystallogr 15:24–31Google Scholar
  22. 22.
    Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr D Biol Crystallogr 9:867–873Google Scholar
  23. 23.
    Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) 3-Dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666CrossRefGoogle Scholar
  24. 24.
    Taylor GL (2010) Introduction to phasing. Acta Crystallogr D Biol Crystallogr 66:325–338CrossRefGoogle Scholar
  25. 25.
    Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125–132CrossRefGoogle Scholar
  26. 26.
    Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67:271–281CrossRefGoogle Scholar
  27. 27.
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefGoogle Scholar
  28. 28.
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242CrossRefGoogle Scholar
  29. 29.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132CrossRefGoogle Scholar
  30. 30.
    Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62:859–866CrossRefGoogle Scholar
  31. 31.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674CrossRefGoogle Scholar
  32. 32.
    Ishikawa K, Nakagawa A, Tanaka I, Suzuki M, Nishihira J (2000) The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr 56:559–566CrossRefGoogle Scholar
  33. 33.
    Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149CrossRefGoogle Scholar
  34. 34.
    Read RJ, Schierbeek AJ (1988) A phased translation function. J Appl Crystallogr 21:490–495CrossRefGoogle Scholar
  35. 35.
    Haase-Kohn C, Wolf S, Lenk J, Pietzsch J (2011) Copper-mediated cross-linking of S100A4, but not of S100A2, results in proinflammatory effects in melanoma cells. Biochem Biophys Res Commun 413:494–498CrossRefGoogle Scholar
  36. 36.
    Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ (1989) Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol 109:3063–3071CrossRefGoogle Scholar
  37. 37.
    Yatime L (2017) A cystein-dependent activation mechanism for the pro-inflammatory ligands of RAGE? Med Sci (Paris) 33:351–354CrossRefGoogle Scholar
  38. 38.
    McFerrin MB, Snell EH (2002) The development and application of a method to quantify the quality of cryoprotectant solutions using standard area-detector X-ray images. J Appl Crystallogr 35:538–545CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory “Dynamique des Interactions Membranaires Normales et Pathologiques” (DIMNP)—UMR5235Inserm, CNRS, University of MontpellierMontpellier Cedex 5France

Personalised recommendations