Advertisement

Gene Transfer of Calcium-Binding Proteins into Adult Cardiac Myocytes

  • Brian R. Thompson
  • Houda Cohen
  • Addeli Bez Batti Angulski
  • Joseph M. MetzgerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)

Abstract

Heart failure is the leading cause of combined morbidity and mortality in the USA with 50% of cases being diastolic heart failure. Diastolic heart failure results from poor myocardial relaxation and inadequate filling of the left ventricular chamber caused in part by calcium-handling dysregulation. In this chapter we describe methods to investigate new approaches of novel human Ca2+ binding protein motifs to restore normal Ca2+ handling function to diseased myocardium. Gene transfer of parvalbumin into adult cardiac myocytes has been studied as a potential therapeutic, specifically as a strategic Ca2+ buffer to correct cardiac mechanical dysfunction in disease. This chapter provides protocols for studying wild-type parvalbumin isoforms and parvalbumins with strategically designed EF-hand motifs in adult cardiac myocytes via acute adenoviral gene transfer. These protocols have been used extensively to optimize parvalbumin function as a potential therapeutic for failing heart muscle.

Key words

Parvalbumin Calcium Adult cardiac myocyte Contractility Calcium imaging Gene transfer 

Notes

Acknowledgments

This work was supported by funds from NIH.

References

  1. 1.
    Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM (2008) Designing heart performance by gene transfer. Physiol Rev 88:1567–1651CrossRefGoogle Scholar
  2. 2.
    Wang W, Barnabei MS, Asp ML, Heinis FI, Arden E, Davis J, Braunlin E, Li Q, Davis JP, Potter JD et al (2013) Noncanonical EF-hand motif strategically delays Ca2+ buffering to enhance cardiac performance. Nat Med 19:305–312CrossRefGoogle Scholar
  3. 3.
    Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300CrossRefGoogle Scholar
  4. 4.
    Pauls TL, Cox JA, Berchtold MW (1996) The Ca2+−binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta 1306:39–54CrossRefGoogle Scholar
  5. 5.
    Coutu P, Bennett CN, Favre EG, Day SM, Metzger JM (2004) Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked alpha-tropomyosin mutations. Circ Res 94:1235–1241CrossRefGoogle Scholar
  6. 6.
    Rodenbaugh DW, Wang W, Davis J, Edwards T, Potter JD, Metzger JM (2007) Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction. Am J Physiol Heart Circ Physiol 293:H1705–H1713CrossRefGoogle Scholar
  7. 7.
    Szatkowski ML, Westfall MV, Gomez CA, Wahr PA, Michele DE, DelloRusso C, Turner II, Hong KE, Albayya FP, Metzger JM (2001) In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. J Clin Invest 107:191–198CrossRefGoogle Scholar
  8. 8.
    Coutu P, Metzger JM (2002) Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling. Biophys J 82:2565–2579CrossRefGoogle Scholar
  9. 9.
    Wang W, Metzger JM (2008) Parvalbumin isoforms for enhancing cardiac diastolic function. Cell Biochem Biophys 51:1–8CrossRefGoogle Scholar
  10. 10.
    Asp ML, Sjaastad FV, Siddiqui JK, Davis JP, Metzger JM (2016) Effects of modified parvalbumin EF-hand motifs on cardiac myocyte contractile function. Biophys J 110:2094–2105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Brian R. Thompson
    • 1
  • Houda Cohen
    • 1
  • Addeli Bez Batti Angulski
    • 1
  • Joseph M. Metzger
    • 1
    Email author
  1. 1.Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations