Advertisement

Ca2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets

  • Claus W. Heizmann
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)

Abstract

A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the “gold standard” in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.

Key words

Calcium-binding EF-hand Cardiomyopathy Cancer Inflammation Allergy Biomarkers Diagnostic Clinical chemistry Laboratory medicine Drug targets 

Notes

Acknowledgment

I would like to thank Drs Anthea Rowlerson and Dean Malencik for critical reading of the manuscript and Melanie Heizmann for secretarial assistance.

References

  1. 1.
    Schaub MC, Heizmann CW (2008) Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 369:247–264PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wehrens XH, Marks AR (2004) Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Discov 3:565–573CrossRefGoogle Scholar
  3. 3.
    Landstrom AP, Ackerman MJ (2012) Beyond the cardiac myofilament: hypertrophic cardiomyopathy-associated mutations in genes that encode calcium-handling proteins. Curr Mol Med 12:507–518PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Veltri T, Landim-Vieira M, Parvatiyar MS et al (2017) Hypertrophic cardiomyopathy cardiac troponin C mutations differentially affect slow and cardiac muscle regulation. Front Physiol 8:221.  https://doi.org/10.3389/fphys.2017.00221 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang W, Barnabei MS, Asp ML et al (2013) Non-canonical EF-hand motif strategically delays Ca2+ buffering to enhance cardiac performance. Nat Med 19:305–314PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sondergaard MT, Sorensen AB, Skov LL et al (2015) Calmodulin mutations causing catecholaminergic polymorphic ventricular tachycardia confer opposing functional and biophysical molecular changes. FEBS J 282:803–816PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Crotti L, Johnson CN, Graf E et al (2013) Calmodulin mutations associated with recurrent cardiac arrest in infants clinical perspectives. Circulation 127:1009–1017PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Piazza M, Taiakina V, Dieckmann T, Guillemette JG (2017) Structural consequences of calmodulin EF-hand mutations. Biochemistry 56:944–956PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wolska BM (2009) Calcineurin and cardiac function: is more or less better for the heart? Am J Physiol Heart Circ Physiol 297:H1576–H1577PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Olson EN, Molkentin JD (1999) Prevention of cardiac hypertrophy by calcineurin inhibition. Hope or hype? Circ Res 84:623–632PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer. Nat Rev Cancer 15:96–109PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gross SR, Sin CG, Barraclough R, Rudland PS (2014) Joining S100 proteins and migration: for better or worse, in sickness and in health. Cell Mol Life Sci 71:1551–1579PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Stein U, Burock S, Herrmann P et al (2011) Diagnostic and prognostic value of metastasis inducer S100A4 transcripts in plasma of colon, rectal, and gastric cancer patients. J Mol Diagn 13:189–198PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Grigorian M, Ambartsumian N, Lukanidin E (2008) Metastasis-inducing S100A4 protein: implications in non-malignant human pathologies. Curr Mol Med 8:492–496PubMedCrossRefGoogle Scholar
  15. 15.
    Mishra SK, Siddique HR, Saleem M (2012) S100A4 calcium-binding protein is a key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev 31:163–172PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Azimi A, Pernemalm M, Frostvik Stolt M et al (2014) Proteomics analysis of melanoma metastasis: association between S100A13 expression and chemotherapy resistance. Br J Cancer 110:2489–2495PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pietas A, Schlüns K, Marenholz I et al (2002) Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. Genomics 79:513–522PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ramasamy R, Shekhtmann A, Schmidt AM (2016) The multiple faces of RAGE-opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 4:431–446CrossRefGoogle Scholar
  19. 19.
    Most P, Seifert H, Gao E et al (2006) Cardiac S100A1 protein levels determine contractile performance and propensity towards heart failure after myocardial infarction. Circulation 114:1258–1268PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ackermann GE, Marenholz I, Wolfer DP et al (2006) S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses. Biochem Biophys Acta Mol Cell Biol 1763:1307–1319CrossRefGoogle Scholar
  21. 21.
    Kopec-Medrek M, Widuchowska M, Kucharz EJ (2016) Calprotectin in rheumatic diseases: a review. Reumatologia 54:306–309PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ometto F, Friso L, Astorri D et al (2017) Calprotectin in rheumatic diseases. Exp Biol Med (Maywood) 242:859–873CrossRefGoogle Scholar
  23. 23.
    Gebhardt C, Nèmeth J, Angel P, Hess J (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72:1622–1631PubMedCrossRefGoogle Scholar
  24. 24.
    Bruhn S, Fang Y, Barrenäs F et al (2014) A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy. Sci Transl Med 6:218ra4.  https://doi.org/10.1126/scitranslmed.3007410 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Swoboda I, Bugajska-Schretter A, Linhart B, Verdino P, Keller W et al (2007) A recombinant hyperallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy. J Immunol 178:6290–6296PubMedCrossRefGoogle Scholar
  26. 26.
    Freidl R, Gstoettner A, Baranyi U, Swoboda I, Stolz F, Focke-Tejkl M et al (2017) Blocking antibodies induced by immunization with a hyperallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy. J Allergy Clin Immunol 139:1897–1905PubMedCrossRefGoogle Scholar
  27. 27.
    Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326PubMedGoogle Scholar
  28. 28.
    Kawasaki H, Kretsinger RH (2017) Structural and functional diversity of EF-hand proteins: evolutionary perspectives. Protein Sci 26:1898–1920PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Haynes LP, McCue HV, Burgoyne RD (2012) Evolution and functional diversity of calcium-binding proteins (CaBP’s). Front Mol Neurosci 5:1–13CrossRefGoogle Scholar
  30. 30.
    Krebs J, Heizmann CW (2007) Calcium-binding proteins and the EF-hand principle. In: Krebs J, Michalak M (eds) Calcium: a matter of life or death. Elsevier, Amsterdam, pp 51–93CrossRefGoogle Scholar
  31. 31.
    Bunick CG, Nelson MR, Mangahas S et al (2004) Designing sequence to control protein function in an EF-hand protein. J Am Soc 126:5990–5998CrossRefGoogle Scholar
  32. 32.
    Chazin WJ (2011) Relating form and function of EF-hand calcium binding proteins. Accounts Chem Res 44:171–179CrossRefGoogle Scholar
  33. 33.
    Donato R, Cannon BR, Sorci G et al (2013) functions of S100 proteins. Curr Mol Med 13:24–57PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fritz G, Heizmann CW (2004) 3D structures of the calcium and zinc binding S100 proteins. In: Messerschmidt A, Bode W, Cygler M (eds) Handbook of metalloproteins, vol 3. Wiley, Chichester, pp 529–540Google Scholar
  35. 35.
    Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+-signaling S100 proteins and their receptor RAGE in translational medicine: impact on diagnostics and therapy in human disorders. Front Biosci S3:1232–1262Google Scholar
  36. 36.
    Cavalier MC, Melville Z, Aligholizaden E, Raman EPYW et al (2016) Novel protein-inhibitor interactions in site 3 of Ca2+-bound S100B as discovered by X-ray crystallography. Acta Cristallogr D Struct Biol 72:753–760CrossRefGoogle Scholar
  37. 37.
    Xiao Y, Shaw GS, Konermann L (2017) Calcium-mediated control of S100 proteins: allosteric communication via agitator/signal blocking mechanism. J Am Chem Soc 139:11460–11470CrossRefGoogle Scholar
  38. 38.
    Heizmann CW (2005) The importance of calcium-binding proteins in childhood diseases. J Pediatr 147:731–738PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277:4578–4590CrossRefGoogle Scholar
  40. 40.
    Unno M, Kawasaki T, Takahara H et al (2011) Refined crystal structures of human Ca2+/Zn2+-binding S100A3 protein characterized by two disulfide bridges. J Mol Biol 408:477–490PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fernandez-Fernandez MR, Veprintsev DB, Fersht AR (2005) Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci U S A 102:4735–4740PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Moravkova P, Kohoutova D, Reichrt S et al (2016) Role of S100 proteins in colorectal carcinogenesis. Gastroenterol Res Pract 2016:2632703.  https://doi.org/10.1155/2016/2632703 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yen MC, Huang YC, Kan JY et al (2018) S100B expression in breast cancer as a predictive marker for cancer metastasis. J Oncol 52(2):433–440Google Scholar
  44. 44.
    Ismail TM, Bennett D, Platt-Higgins AM et al (2016) S100A4 elevation empowers expression of metastasis effector molecules in human breast cancer. Cancer Res 77(3):780–789.  https://doi.org/10.1158/0008-5472.CAN-16-1802 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dukhanina EA, Lukyanova TI, Dukhanin AS, Georgieva SG (2017) The role of S100A4 protein in the anticancer cytotoxicity: its presence is required on the surface of CD4+CD25+PGRPs+S100A4+ lymphocyte and undesirable on the surface of target cells. Cell Cycle 17(4):479–485.  https://doi.org/10.1080/15384101.2017.1415678 CrossRefGoogle Scholar
  46. 46.
    Donato R, Heizmann CW (2010) S100B protein in the nervous system and cardiovascular apparatus in normal and pathological conditions. Cardiovasc Psych Neurol 2010:929712Google Scholar
  47. 47.
    Haiech J, Heizmann CW, Krebs J (2015 and 2017) Special issues on calcium: Biochim Biophys Acta: Mol Cell Res 1853:1919–2182 and 1864: 839–1131Google Scholar
  48. 48.
    Heizmann CW (ed) (1991) Novel calcium-binding proteins: Fundamentals and clinical implications. Springer, HeidelbergGoogle Scholar
  49. 49.
    Carafoli E, Brini M (eds) (2007) Calcium signaling and disease: molecular pathology of calcium, Subcellular biochemstry, vol 45. Springer, HeidelbergGoogle Scholar
  50. 50.
    Krebs J, Michalak M (eds) (2007) Calcium: a matter of life or death, New comprehensive biochemistry, vol 41. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Heizmann CW (ed) (2013) Calcium-binding proteins and RAGE: From structural basics to clinical applications, Methods in molecular biology, vol 963. Springer Protocols, Humana, New YorkGoogle Scholar
  52. 52.
    Kretsinger RH, Uversky VN, Permyakov EA (eds) (2013) Encyclopedia metalloproteins. Springer, BerlinGoogle Scholar
  53. 53.
    Krebs J (ed) (2018) Membrane dynamics and calcium signaling, Advances in experimental medicine and biology, vol 981. Springer, HeidelbergGoogle Scholar
  54. 54.
    Heizmann CW (ed) (2019) Calcium-binding proteins of the EF-hand superfamily: from basics to medical applications, Methods in molecular biology, vol 1929. Springer Protocols, Humana, New York (in press)Google Scholar
  55. 55.
    Pinto JR, Parvatiyar MS, Jones MA et al (2009) A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem 284:19090–19100PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Landstrom AP, Parvatiyar MS, Pinto JR et al (2008) Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol 45:281–288PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C et al (2012) A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation. J Biol Chem 287:31845–31855PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li MX, Hwang PM (2015) Structure and function of cardiac troponin C (TNNC1): implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 571:153–166PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lu QW, Wu YY, Morimoto S (2013) Inherited cardiomyopathies caused by troponin mutations. J Geriatr Cardiol 10:91–101PubMedPubMedCentralGoogle Scholar
  61. 61.
    Hof D, Klingenberg R, von Eckardstein A (2013) Sensible use of high-sensitive troponin assays. In: Heizmann CW (ed) Calcium-binding proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer-Protocols, Humana, New York, pp 385–406CrossRefGoogle Scholar
  62. 62.
    White HD, Thygesen K, Alpert JS, Jaffe AS (2014) Clinical implications of the third universal definition of myocardial infarction. Heart 100:424–432PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Korff S, Katus HA, Giannitsis E (2006) Differential diagnosis of elevated troponins. Heart 92:987–993PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Roongsritong C, Warraich I, Bradley C (2004) Common causes of troponin elevations in the absence of acute myocardial infarction: incidence and clinical significance. Chest 125:1877–1884PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hwang PM, Cai F, Pineda-Sanabria SE, Corson DC, Sykes BD (2014) The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci 111:14412–14417PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Li Y, Zhu G, Paolocci N et al (2017) Heart failure-related hyperphosphorylation in the cardiac Troponin I C terminus has divergent effects on cardiac function in vivo. Circ Heart Fail 10(9):e003850.  https://doi.org/10.1161/CIRCHEARTFAILURE117.003850 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Haghikia A, Kaya Z, Schwab J et al (2015) Evidence of autoantibodies against cardiac troponin I and sarcomeric myosin in peripartum cardiomyopathy. Basic Res Cardiol 110(6):60.  https://doi.org/10.1007/1007/s00395-015-0517-2 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nyegaard M, Overgaard MT, Sondergaard MT et al (2012) Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Human Gen 91:703–712CrossRefGoogle Scholar
  69. 69.
    Limpitikul WB, Dick IE, Joshi-Mukherjee R et al (2014) Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca2+ currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 74:115–124PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hwang HS, Nitu FR, Yang Y et al (2014) Divergent regulation of ryanodine receptor 2 calcium release channel by arrhythmogenic human calmodulin missense mutations. Circ Res 114:1114–1124PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sondergaard MT, Tian X, Lia Y et al (2015) Arrhythmogenic calmodulin mutations affect the activation and termination of the cardiac ryanodine receptor-mediated Ca2+ release. J Biol Chem 290:26151–26162PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jimènez-Jaimez J, Palomino-Doza P, Ortega A et al (2016) Calmodulin 2 mutation N98S is associated with unexplained cardiac arrest in infants due to low clinical penetrance electric disorders. PLoS One 11(4):e0153851.  https://doi.org/10.1371/journal.pone.01533851 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Crotti L, Johnson CN, Graf E, De Ferrari GM, Cueno BF et al (2013) Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127:1009–1017PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Makita N, Yagihara N, Crotti L et al (2014) Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet 7:466–474PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Coutu P, Bennett CN, Favre EG, Day SM, Metzger JM (2004) Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked alpha-tropomyosin mutations. Circ Res 94:1235–1241CrossRefGoogle Scholar
  76. 76.
    Tsoporis JN, Marks A, Haddad A, Dawood F, Liu PP, Parker TG (2005) S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation 111:598–606PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Remppis A, Greten T, Schäfer BW et al (1996) Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta 1313:253–257PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ehlermann P, Remppis A, Guddat O et al (2000) Right ventricular upregulation of the Ca2+-binding protein S100A1 in chronic pulmonary hypertension. Biochim Biophys Acta 1500:249–255PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Most P, Pleger ST, Völkers M et al (2004) Cardial adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest 114:1550–1563PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Most P, Raake P, Weber C, Katus HA, Pleger ST (2013) S100A1 gene therapy in small and large animals. In: Heizmann CW (ed) Calcium-binding proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer-Protocols, Humana, New York, pp 407–420CrossRefGoogle Scholar
  81. 81.
    Belmonte SL, Margulies KB, Blaxall BC (2011) S100A1: another step towards therapeutic development for heart failure. J Am Coll Cardiol 58:974–976PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pleger ST, Most P, Boucher M et al (2007) Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115:2506–2515PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wang W, Asp ML, Guerrero-Serna G, Metzger JM (2014) Differential effects of S100 proteins A2 and A6 on cardiac Ca2+ cycling and contractile performance. J Mol Cell Cardiol 72:117–125PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mofid A, Newman NS, Lee PJ et al (2017) Cardiac overexpression of S100A6 attenuates cardiomyocyte apoptosis and reduces infarct size after myocardial ischemia-reperfusion. J Am Heart Assoc 6(2):e004738.  https://doi.org/10.1161/JAHA116.004738 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Snipsoyr MG, Ludvigsen M, Petersen E, Wiggers H, Honoré B (2016) A systematic review of biomarkers in the diagnosis of infective endocarditis. Int J Cardiol 202:564–570PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Nazari A, Khorramdelazad H, Hassanshahi G et al (2017) S100A12 in renal and cardiovascular diseases. Life Sci 191:253–258PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Buyukterzi Z, Can U, Alpaydin S et al (2017) Enhanced S100A9 and S100A12 expression in acute coronary syndrome. Biomark Med 11:229–237PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Turner NA (2016) Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol 94:189–200PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Müller I, Vogl T, Pappritz K et al (2017) Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circ Heart Fail 10(11):e004125PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sheikh F, Lyon RC, Chen J (2015) Functions of myosin light chain-2 (MLC-2) in cardiac muscle and disease. Gene 569:14–20; Corrigendum: 571 (2015) 151PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sussman MA, Lim HW, Gude N et al (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693PubMedCrossRefGoogle Scholar
  92. 92.
    Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bueno OF, Wilkins BJ, Tymitz KM et al (2002) Impaired cardiac hypertrophic response in calcineurin Abeta-deficient mice. Proc Natl Acad Sci U S A 99:4586–4591PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bueno OF, van Rooij E, Molkentin JD et al (2002) Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res 53:806–821PubMedCrossRefGoogle Scholar
  95. 95.
    Tsao L, Neville C, Musaro A, McCullagh KJ, Rosenthal N (2000) Revisiting calcineurin and human heart failure. Nat Med 6:2–3PubMedCrossRefGoogle Scholar
  96. 96.
    Heineke J (2013) Screening for novel calcium-binding proteins that regulate cardiac hypertrophy: CIB1 as an example. In: Heizmann CW (ed) Calcium-binding proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer-Protocols, Humana, New York, pp 279–301CrossRefGoogle Scholar
  97. 97.
    Naik UP, Patel PM, Parise IV (1997) Identification of a novel calcium-binding protein that interacts with the integrin alpha IIb cytoplasmic domain. J Biol Chem 272:4651–4654PubMedCrossRefGoogle Scholar
  98. 98.
    Gentry HR, Singer AU, Betts I et al (2005) Structural and biochemical characterization of CIB1 delineates a new family of EF-hand containing proteins. J Biol Chem 280:8407–8415PubMedCrossRefGoogle Scholar
  99. 99.
    Heineke J, Auger-Messier M, Correll RN et al (2010) CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med 16:872–879PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Huang Y, Wang KKW (2001) The calpain family and human disease. Trends Mol Med 7:355–362PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Latavernier E, Perez J, Bellocq A et al (2008) Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ Res 102:720–728CrossRefGoogle Scholar
  102. 102.
    Nishida K, Yamaguchi O, Otsu K (2015) Degradation system in heart failure. J Mol Cell Cardiol 84:212–222PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bompotis GC, Deftereos S, Angelidis C et al (2016) Altered calcium handling in reperfusion injury. Med Chem 12:114–130PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ilari A, Fiorillo A, Poser E et al (2015) Structural basis of sorcin-mediated calcium-dependent signal transduction. Sci Rep 5:16828.  https://doi.org/10.1038/srep/6828 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Collins LP, Meyers MB, Zhang J et al (2007) Expression of a sorcin missense mutation in the heart modulates excitation-contraction coupling. FASEB J 21:475–487CrossRefGoogle Scholar
  106. 106.
    Franceschini S, Ilari A, Verzili D et al (2008) Molecular basis for the impaired function of the natural F112L sorcin mutant: X-ray crystal structure, calcium affinity, and interaction with annexin VII and the ryanodine receptor. FASEB J 22:295–306PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zamparelli C, Macquaide N, Colotti G et al (2010) Activation of the cardiac Na(+)-Ca(2+) exchanger by sorcin via the interaction of the Ca2+-binding domains. J Mol Cell Cardiol 49:132–141PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Fowler MR, Colotti G, Chiancone E et al (2008) Sorcin modulates cardiac L-type Ca2+-current by functional interaction with the alpha1C subunit in rabbits. Exp Physiol 93:1233–1238PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Li T, Yi L, Hai L et al (2018) The interactome and spatial redistribution feature of Ca2+receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion. Cell Death Dis 9:292.  https://doi.org/10.1038/s1419-017-02553-7 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Nussinov R, Zhang M, Tsai CJ, Jang H (2017) Calmodulin and IQGAP1 activation of PI3Ka and Akt in KRAS, HRAS and NRAS-driven cancers. Biochim Biophys Acta 1864(6 Pt B):2304–2314.  https://doi.org/10.1016/j.bbadis.2017.10032 CrossRefGoogle Scholar
  111. 111.
    Astrand R, Unden J, Romner B (2013) Clinical use of the calcium-binding S100B protein. In: Heizmann CW (ed) Calcium-binding proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer-Protocols, Humana, New York, pp 373–384CrossRefGoogle Scholar
  112. 112.
    Harpio R, Einarsson R (2004) S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin Biochem 37:512–518PubMedCrossRefGoogle Scholar
  113. 113.
    Gogas H, Eggermont AMM, Hauschild A et al (2009) Biomarkers in melanoma. Ann Oncol 20(Suppl 6):vi8–vi13.  https://doi.org/10.1093/annonc/mdp251 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Leclerc E (2011) The roles of S100 proteins and RAGE in melanoma. In: Tanaka Y (ed) Breakthrough in melanoma research, vol 1. InTech, Croatia, pp 331–356Google Scholar
  115. 115.
    Livingstone E, Krajewski C, Eigentler TK, Windemuth-Kieselbach C et al (2015) Prospective evaluation of follow-up in melanoma patients in Germany—results of a multicentre and longitudinal study. Eur J Cancer 51:653–667PubMedCrossRefGoogle Scholar
  116. 116.
    Khan MI, Su YK, Zou J, Yang LW, Chou RH, Yu C (2018) S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS One 13(2):e0190545PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tandler N, Mosch B, Pietzsch J (2012) Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 43:2203–2230PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Syed DN, Aljohani A, Waseem D, Mukhtar H (2018) Ousting RAGE in melanoma: a viable therapeutic target? Semin Cancer Biol 49:20–28PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Tian T, Li X, Hua Z et al (2017) S100A1 promotes cell proliferation and migration and is associated with lymph node metastasis in ovarian cancer. Discov Med 23:235–245PubMedPubMedCentralGoogle Scholar
  120. 120.
    Goh JY, Feng M, Wang W et al (2017) Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nat Med 23:1319–1330PubMedGoogle Scholar
  121. 121.
    Lauriola L, Michetti F, Maggiano N et al (2000) Prognostic significance of the Ca2+-binding protein S100A2 in laryngeal squamous-cell carcinoma. Int J Cancer 89:345–349PubMedCrossRefGoogle Scholar
  122. 122.
    Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L et al (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64:5564–5569PubMedCrossRefGoogle Scholar
  123. 123.
    Zhang Y, Wang H, Wang J et al (2015) Global analysis of chromosome 7 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer. Cancer Metastasis Rev 34(2):333–345PubMedCrossRefGoogle Scholar
  124. 124.
    Wang T, Liang Y, Thakur A et al (2016) Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer. Tumour Biol 37(2):2299–2304PubMedCrossRefGoogle Scholar
  125. 125.
    Wicki R, Franz C, Scholl FA et al (1997) Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium 22:243–254PubMedCrossRefGoogle Scholar
  126. 126.
    Camby I, LeFranc F, Titeca G et al (2000) Differential expression of S100 calcium-binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumors. Neuropathol Appl Neurobiol 26:76–90PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Camby I, Nagy N, Lopes MB et al (1999) Supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas are characterized by differential expression of S100 proteins. Brain Pathol 9:1–19PubMedCrossRefGoogle Scholar
  128. 128.
    Tao R, Wang ZF, Qui W et al (2017) Role of S100A3 in human hepatocellular carcinoma and the anticancer effect of sodium cantharidinate. Exp Ther Med 13:2812–2818PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Liu J, Li GL, Dong HW et al (2008) In silico analysis and verification of S100 gene expression in gastric cancer. BMC Cancer 8:261.  https://doi.org/10.1186/1471-2407-8-261 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Ismail TM, Zhang S, Fernig DG et al (2010) Self-association of calcium binding protein, S100A4 and metastasis. J Biol Chem 285:914–922PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Kim EJ, Helfman DM (2003) Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem 278:30063–30073PubMedCrossRefGoogle Scholar
  132. 132.
    Fei F, Qu J, Zhang M, Li Y, Zhang S (2017) S100A4 in cancer progression and metastasis: a systematic review. Oncotarget 8:73219–73239PubMedPubMedCentralGoogle Scholar
  133. 133.
    Dahlmann M, Okhrimenko A, Marcinkowski P, Osterland M et al (2014) RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis. Oncotarget 5:3220–3233PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Reckenbeil J, Kraus D, Probsmeier R et al (2016) Cellular distribution and gene expression pattern of metastasin (S100A4), calgranulin A (S100A8), and calgranulin B (S100A9) in oral lesions as marker for molecular pathology. Cancer Investig 34:246–254CrossRefGoogle Scholar
  135. 135.
    Lv Y, Niu Z, Guo X et al (2018) Serum S100 calcium binding protein A4 (S100A4, metastasin) as a diagnostic and prognostic biomarkers in epithelial ovarian cancer. Br J Biomed Sci 75(2):88–91.  https://doi.org/10.1080/09674845.2017.1394052 CrossRefPubMedGoogle Scholar
  136. 136.
    Tahara S, Nojima S, Ohshima K et al (2016) S100A4 accelerates the proliferation and invasion of endometrioid carcinoma and is associated with the ‘MELF ‘pattern. Cancer Sci 107(9):1345–1352PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Egeland EV, Boye K, Park D et al (2017) Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer. Breast Cancer Res Treat 162:127–137PubMedCrossRefGoogle Scholar
  138. 138.
    Dahlmann M, Kobelt D, Walther W et al (2016) S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction. Cancer (Basel) 8(6):E59.  https://doi.org/10.3390/cancers8060059 CrossRefGoogle Scholar
  139. 139.
    Herwig N, Belter B, Pietzsch J (2016) Extracellular S100A4 affects endothelial cell integrity and stimulates transmigration of A375 melanoma cells. Biochem Biophys Res Commun 477(4):963–969PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kozono S, Ohuchida K, Ohtsuka T et al (2013) S100A4 mRNA expression level is a predictor of radioresistance of pancreatic cancer cells. Oncol Rep 30(4):1601–1608PubMedCrossRefGoogle Scholar
  141. 141.
    Mudduluru G, Ilm K, Fuchs S, Stein U (2017) Epigenetic silencing of miR-520c leads to induced S100A4 expression and its mediated colorectal cancer progression. Oncotarget 8(13):21081–21094PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zakaria R, Platt-Higgins A, Rathi N et al (2016) Metastasis-inducing proteins are widely expressed in human brain metastases and associated with intracranial progression and radiation response. Br J Cancer 114(10):1101–1108PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Hattinger E, Zwicker S, Ruzicka T et al (2013) Opposing functions of psoriasin (S100A7) and koebnerisin (S100A15) in epithelial carcinogenesis. Curr Opin Pharmacol 13(4):588–594PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kataoka K, Ono T, Murata H et al (2012) S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett 3:1149–1153PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lin M, Xia B, Qin L, Chen H, Lou G (2018) S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p. DNA Cell Biol 37(5):491–500.  https://doi.org/10.1089/dna.2017.3953 CrossRefPubMedGoogle Scholar
  146. 146.
    Tian T, Li X, Hua Z et al (2017) S100A7 promotes the migration, invasion and metastasis of human cervical cancer cells through epithelial-mesenchymal transition. Oncotarget 8(15):24964–24977.  https://doi.org/10.18632/oncotarget.15329 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Liu Y, Bunston C, Hodson N et al (2017) Psoriasin promotes invasion, aggregation and survival of pancreatic cancer cells: association with disease progression. Int J Oncol 50:1491–1500PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Padilla L, Dakhel S, Adan J et al (2017) S100A7: from mechanism to cancer therapy. Oncogene 36:6749–6761PubMedCrossRefGoogle Scholar
  149. 149.
    Turville J, Aghahoseini A, Sivarajasingham N, Abbas K et al (2016) Faecal calprotectin in patients with suspected colorectal cancer: a diagnostic accuracy study. Br J Gen Pract 66:e499–e506CrossRefGoogle Scholar
  150. 150.
    Prieto D, Sotelo N, Seija N et al (2017) S100A9 protein in exosomes from chronic lymphocytic leukemia cells promote NF-kB activity during disease progression. Blood 130:777–788PubMedCrossRefGoogle Scholar
  151. 151.
    Shin JM, Chang IK, Lee YH et al (2016) Potential role of S100A8 in cutaneous squamous cell carcinoma differentiation. Ann Dermatol 28:179–185PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Gunaldi M, Okuturlar Y, Gedikbasi A et al (2015) Diagnostic importance of S100A9 and S100A12 in breast cancer. Biomed Pharmacother 76:52–56PubMedCrossRefGoogle Scholar
  153. 153.
    Topuz MF, Binnetoglu A, Yumusakhuylu AC et al (2017) Circulating calprotectin as a biomarker of laryngeal carcinoma. Eur Arch Otorhinolaryngol 274:2499–2504PubMedCrossRefGoogle Scholar
  154. 154.
    Huang CH, Kuo CJ, Liang SS et al (2015) Onco-proteomics identifies urinary S100A9 and GRN as potential combinatorial biomarkers for early diagnosis of hepatocellular carcinoma. Biochim Biophys Acta Clin 3:205–213Google Scholar
  155. 155.
    Argyris PP, Slama ZM, Ross KF, Khammanivong A, Herzberg MC (2018) Calprotectin and the initiation and progression of head and neck cancer. J Dent Res 97(6):674–682.  https://doi.org/10.1177/0022034518756330 CrossRefPubMedGoogle Scholar
  156. 156.
    Yasar O, Akcay T, Obek C, Turegun FA (2017) Significance of S100A8, S100A9 and calprotectin levels in bladder cancer. Scand J Clin Lab Invest 77(6):437–441.  https://doi.org/10.1080/00365513.2017.1336567 CrossRefPubMedGoogle Scholar
  157. 157.
    Reeb AN, Li W, Sewell W (2014) S100A8 is a novel therapeutic target for anaplastic thyroid carcinoma. J Clin Endocinol Metab 25:jc20142988Google Scholar
  158. 158.
    Hibino T, Sakaguchi M, Miyamoto S, Yamamoto M et al (2012) S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73(1):172–183.  https://doi.org/10.1158/0008-5472.CAN-11_3843 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Tamburini J (2017) S100 proteins in AML: differentiation and beyond. Blood 129:1893–1894PubMedCrossRefGoogle Scholar
  160. 160.
    Ji J, Su L, Liu Z (2016) Critical role of calpain in inflammation. Biomed Rep 5(6):647–652PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Liu Y, Han X, Gao B (2015) Knockdown of S100A11 expression suppresses ovarian cancer cell growth and invasion. Exp Ther Med 9:1460–1464PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Xiao M, Li T, Ji Y et al (2018) S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway. Oncol Lett 15:175–182PubMedGoogle Scholar
  163. 163.
    Jaiswal JK, Nylandsted J (2015) S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 14:502–509PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Martinez-Aguilar J, Clifton-Bligh R, Molloy MP (2015) A multiplexed, targeted mass spectrometry assay of the S100 protein family uncovers the isoform-specific expression in thyroid tumours. BMC Cancer 15:199.  https://doi.org/10.1186/s12885-015-1217-x CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Zhong J, Liu C, Chen YJ et al (2016) The association between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion. J Transl Med 14:80.  https://doi.org/10.1186/s12967-016-0824-x CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Wang X, Yang J, Qian J et al (2015) S100A14, a mediator of epithelial-mesenchymal transition, regulates proliferation, migration and invasion of human cervical cancer cells. Am J Cancer Res 5:1484–1495PubMedPubMedCentralGoogle Scholar
  167. 167.
    Zhu M, Wang H, Cui J et al (2017) Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis 8:e2938.  https://doi.org/10.1038/cddis.2017.297 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Tanaka M, Ichikawa-Tomikawa N, Shishito N et al (2015) Co-expression of S100A14 and S100A16 correlates with poor prognosis in human breast cancer and promotes cancer cell invasion. BMC Cancer 15:53.  https://doi.org/10.1186/s12885-015-1059-6 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Xu C, Chen H, Wang X et al (2014) S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem 289:827–837PubMedCrossRefGoogle Scholar
  170. 170.
    Sun X, Wang T, Zhang C, Ning K et al (2018) S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol 117:275–283PubMedCrossRefGoogle Scholar
  171. 171.
    Arumugam T, Ramachandran V, Gomez SB et al (2012) S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res 18(16):4356–4364PubMedCrossRefGoogle Scholar
  172. 172.
    Arumugam T, Ramachandran V, Maxwell D et al (2013) Designing and developing S100P inhibitor 5-methyl cromolyn (C5OH) for pancreatic cancer therapy. Mol Cancer Ther 12(5):654–662PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Arumungam T, Ramachandran V, Logsdon CD (2006) Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models. J Natl Cancer Inst 98:1806–1818CrossRefGoogle Scholar
  174. 174.
    Penumutchu SR, Chou RH, Yu C (2014) Interaction between S100P and the anti-allergy drug cromolyn. Biochem Biophys Res Commun 454:404–409PubMedCrossRefGoogle Scholar
  175. 175.
    Namba T, Homan T, Nishimura T et al (2009) Up-regulation of S100P expression by non-steroidal anti-inflammatory drugs and its role in anti-tumorigenic effects. J Biol Chem 284:41584167CrossRefGoogle Scholar
  176. 176.
    Matsunaga T, Ohtsuka T, Asano K et al (2017) S100P in duodenal fluid is a useful diagnostic marker for pancreatic ductal adenocarcinoma. Pancreas 46:1288–1295PubMedCrossRefGoogle Scholar
  177. 177.
    Zhu L, Ito T, Nakahara T et al (2013) Upregulation of S100P, receptor for advanced glycation end products and ezrin in malignant melanoma. J Dermatol 40:973–979PubMedCrossRefGoogle Scholar
  178. 178.
    Peng C, Chen H, Wallwiener M et al (2016) Plasma S100P level as a novel prognostic marker of metastatic breast cancer. Breast Cancer Res Treat 157:329–338PubMedCrossRefGoogle Scholar
  179. 179.
    Liu Y, Wang C, Shan X et al (2017) S100P is associated with proliferation and migration in nasopharyngeal carcinoma. Oncol Lett 14:525–532PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Gutknecht MF, Seaman ME, Ning B et al (2017) Identification of the S100 fused-type protein hornerin as a regulator of tumor vascularity. Nat Commun 8(1):552.  https://doi.org/10.1038/s41467-017-00488-6 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Colotti G, Poser E, Fiorillo A et al (2014) Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. Molecules 19:13976–13989PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Genovese I, Fiorillo A, IIari A et al (2017) Binding of doxorubicin to sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis 8(7):e2950.  https://doi.org/10.1038/cddis.2017.34 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Dabaghi M, Rahgozar S, Moshtaghian J et al (2016) Overexpression of sorcin is a prognostic biomarker for multidrug-resistant pediatric acute lymphoblastic leukemia and correlates with upregulated MDR1/P-gp. Genet Test Mol Biomarkers 20:516–521PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Tuo H, Shu F, She S et al (2017) Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation. Oncotarget 8(61):104258–104271PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Tong W, Sun D, Wang Q, Suo J (2015) Sorcin enhances metastasis and promotes epithelial-to-mesenchymal transition of colorectal cancer. Cell Biochem Biophys 72(2):453–459PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Gong Z, Sun P, Chu H et al (2014) Overexpression of sorcin in multidrug-resistant human breast cancer. Oncol Lett 8(6):2393–2398PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Leisner TM, Freeman TC, Black JL, Parise LV (2016) CIB1: a small protein with big ambitions. FASEB J 30(8):2640–2650PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Wang X, Peng X, Zhang X et al (2017) The emerging roles of CIB1 in cancer. Cell Physiol Biochem 43(4):1413–1424PubMedCrossRefGoogle Scholar
  189. 189.
    Hu YH, Oh S, Yeo YR et al (2015) Swiprosin-1 stimulates cancer invasion and metastasis by increasing the Rho family of GTPase signaling. Oncotarget 6(15):13060–13071Google Scholar
  190. 190.
    Fan CC, Cheng WC, Huang YC et al (2017) EFHD2 promotes epithelial-to-mesenchymal transition and correlates with postsurgical recurrence of stage I lung carcinoma. Sci Rep 7(1):14617.  https://doi.org/10.1038/s41598-017-15186-y CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Kang J, Kang YH, Oh BM et al (2016) Tescalcin expression contributes to invasive and metastatic activity in colorectal cancer. Tumor Biol 37(10):13843–13853CrossRefGoogle Scholar
  192. 192.
    Li N, Zheng Y, Xuang C et al (2015) LETM1 overexpression is correlated with the clinical features and survival outcome of breast cancer. Int J Clin Exp Pathol 8(10):12893–12900PubMedPubMedCentralGoogle Scholar
  193. 193.
    Wang CA, Liu Q, Chen Y et al (2015) Clinical implications of leucine zipper/EF hand-containing transmembrane-1 overexpression in the prognosis of the triple-negative breast cancer. Exp Mol Pathol 98(2):254–259PubMedCrossRefGoogle Scholar
  194. 194.
    Huang B, Zhang J, Zhang X et al (2017) Suppression of LETM1 by siRNA inhibits cell proliferation and invasion of bladder cancer cells. Oncol Rep 38(5):2935–2940PubMedCrossRefGoogle Scholar
  195. 195.
    Bendickova K, Tidu F, Fric J (2017) Calcineurin-NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med 9(8):990–999.  https://doi.org/10.15252/emmm.201707698 CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Birlea SA (2017) S100B: correlation with active vitiligo depigmentation. J Invest Dermatol 137(7):1408–1410PubMedCrossRefGoogle Scholar
  197. 197.
    Speeckaert R, Voet S, Hoste E, van Geel N (2017) S100B is a potential activity marker in nonsegmental vitiligo. J Invest Dermatol 137(7):1445–1453PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Hansen MT, Forst B, Cremers N et al (2014) A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34(4):424–435.  https://doi.org/10.1038/onc.2013.568 CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Jia J, Duan Q, Guo J, Zheng Y (2014) Psoriasin, a multifunctional player in different diseases. Curr Protein Pept Sci 15:836–842PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    D’Amico F, Skarmoutsou E, Granata M et al (2016) S100A7: a rAMPing up AMP molecule in psoriasis. Cytokine Growth Factor Rev 32:97–104CrossRefGoogle Scholar
  201. 201.
    Cubillos S, Norgauer J (2016) Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med 38(4):1083–1092PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Rangaraj A, Ye L, Sanders AJ et al (2017) Molecular and cellular impact of psoriasin (S100A7) on the healing of human wounds. Exp Ther Med 13(5):2151–2160PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Vogl T, Stratis A, Wixler V et al (2018) Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile imflammation. J Clin Invest 28(5):1852–1866.  https://doi.org/10.1172/JCI89867 CrossRefGoogle Scholar
  204. 204.
    Rothmund F, Gerss J, Ruperto N et al (2013) Validation of relapse risk biomarkers for routine use in patients with juvenile idiopathic arthritis. Arthritis Care Res (Hoboken) 66(6):949–955.  https://doi.org/10.1002/acr.22248 CrossRefGoogle Scholar
  205. 205.
    Nefla M, Holzinger D, Berenbaum F, Jacques C (2016) The danger from within: alarmins in arthritis. Nat Rev Rheumatol 12(11):669–683PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Mariani A, Marsili M, Nozzi M et al (2014) Serum calprotectin: review of its usefulness and validity in paediatric rheumatic diseases. Clin Exp Rheumatol 33(1):109–114PubMedPubMedCentralGoogle Scholar
  207. 207.
    Leach ST, Yang Z, Messina I, Song C et al (2007) Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand J Gastro 42(11):1321–1331CrossRefGoogle Scholar
  208. 208.
    Malickova K, Kalousova M, Fucikova T et al (2010) Anti-inflammatory effect of biological treatment in patients with inflammatory bowel diseases: calprotectin and IL-6 changes do not correspond to sRAGE changes. Scand J Clin Lab Invest 70(49):294–299PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Lopez RN, Leach ST, Lemberg DA et al (2016) Faecal biomarkers in inflammatory bowel disease. J Gastroenterol Hepatol 32(3):577–582.  https://doi.org/10.1111/jgh.13611 CrossRefGoogle Scholar
  210. 210.
    Rosso C, Caviglia GP, Pellicano R (2016) The usefulness of fecal calprotectin determination in pediatric intestinal diseases. Minerva Pediatr 68(6):478–486PubMedGoogle Scholar
  211. 211.
    Foell D, Wulffraat N, Wedderburn LR et al (2010) Methotrexate withdrawal at 6 vs 12 month in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303(13):1266–1273PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Schonthaler HB, Guinea-Viniegran J, Wculek SK et al (2013) S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity 39(6):1171–1181PubMedCrossRefGoogle Scholar
  213. 213.
    Kostakis ID, Cholidou KG, Vaiopoulos AG et al (2013) Fecal calprotectin in pediatric inflammatory bowel disease: a systematic review. Dig Dis Sci 58(2):309–319PubMedCrossRefGoogle Scholar
  214. 214.
    Kane D, Roth J, Frosch M et al (2003) Increased perivascular synovial membrane expression of myeloid-related proteins in psoriatric arthritis. Arthritis Rheum 48:1676–1685PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Obry A, Lequerré T, Hardouin J et al (2014) Identification of S100A9 as biomarker of responsiveness to the methotrexate/etanercept combination in rheumatoid arthritis using a proteomic approach. PLoS One 9(12):e115800PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Garg M, Leach ST, Coffey MJ et al (2017) Age-dependent variation of fecal calprotectin in cystic fibrosis and healthy children. J Cystic Fibrosis 16(5):631–636CrossRefGoogle Scholar
  217. 217.
    Ulas T, Pirr S, Fehlhaber B et al (2017) S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol 18(6):622–632.  https://doi.org/10.1038/ni.3745 CrossRefPubMedGoogle Scholar
  218. 218.
    Hiroshima Y, Hsu K, Tedla N et al (2017) S100A8/A9 and S100A9 reduce acute lung injury. Immunol Cell Biol 95(5):461–472PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Boschetti G, Garnero P, Moussata D et al (2015) Accuracies of serum and fecal S100 proteins (calprotectin and calgranulin C) to predict the response to TNF antagonists in patients with Crohn’s disease. Inflamm Bowel Dis 21(2):331–336PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Holzinger D, Kessel C, Omenetti A, Gattorno M (2015) From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol 11(10):573–585.  https://doi.org/10.1038/nrrheum.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Kessel C, Holzinger D, Foell D (2012) Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol 147(3):229–241.  https://doi.org/10.1016/j.clim.2012.11.008 CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Taverna D, Pollins AC, Sindona G et al (2015) Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers. J Proteome Res 14(2):986–996PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Wicki R, Schäfer BW, Erne P, Heizmann CW (1996) Characterization of the human and mouse cDNAs coding for S100A13, a new member of the S100 protein family. Biochem Biophys Res Commun 227:594–599PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Andrés Cerezo L, Sumova B, Prajzlerova K et al (2017) Calgizzarin (S100A11): a novel inflammatory mediator associated with disease activity of rheumatoid arthritis. Arthritis Res Ther 19(1):79.  https://doi.org/10.1186/s13075-017-1288-y CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Foell D, Ichida F, Vogl T et al (2003) S100A12 (EN-RAGE) in monitoring Kawasaki disease. Lancet 361:1270–1272PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Gottsch JD, Liu SH, Minkovitz JB et al (1995) Autoimmunity to a cornea-associated stromal antigen in patients with Mooren’s ulcer. Ophthalmol Vis Sci 36:1541–1547Google Scholar
  227. 227.
    Heida A, Kobold ACM, Wagenmakers L et al (2017) Reference values of fecal calgranulin C (S100A12) in school aged children and adolescents. Clin Chem Lab Med 56(1):126–131.  https://doi.org/10.1515/cclm-2017-0152 CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Heida A, van de Vijver E, Muller Kobold A, van Rheenen P (2017) Selecting children with suspected inflammatory bowel disease for endoscopy with the calgranulin C or calprotectin stool test. Protocol of the CACATU study. BMJ Open 7(5):e015636PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Wilsmann-Theis D, Wagenpfeil J, Holzinger D et al (2015) Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity. J Eur Acad Dermatol Venerol 30(7):1165–1170.  https://doi.org/10.1111/jdv.1326910 CrossRefGoogle Scholar
  230. 230.
    Farokhzadian J, Mangolian Shahrbabaki P, Bagheri V (2017) S100A12-CD 36 axis: a novel player in the pathogenesis of atherosclerosis? Cytokine 17:30211–30219.  https://doi.org/10.1016/j.cyto.2017.07.010 CrossRefGoogle Scholar
  231. 231.
    Elsayed S, Apold J, Holen E et al (1991) The structural requirements of epitopes with IgE binding capacity demonstrated by three major allergens from fish, egg and tree pollen. Scand J Clin Lab Invest Suppl 204:17–31PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Zuidmeer-Jonggejan L, Huber H, Swoboda I et al (2015) Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immuntherapy of fish allergy. Int Arch Allergy Immunol 166(1):41–51CrossRefGoogle Scholar
  233. 233.
    Ruethers T, Raith M, Sharp MF et al (2018) Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species. Clin Exp Allergy 48(4):452–463PubMedCrossRefGoogle Scholar
  234. 234.
    Kuehn A, Swoboda I, Arumugam K et al (2014) Fish allergens at a glance: variable allergenicity of parvalbumin, the major fish allergens. Front Immunol 5:179.  https://doi.org/10.3389/fimm.2014.00179 CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Ebashi S, Ebashi F, Kodama A (1967) Troponin as the Ca2+-receptive protein in the contractile system. J Biochem 62:137–138PubMedCrossRefGoogle Scholar
  236. 236.
    Jin JP, Zang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukariot Gene Expr 18:93–124CrossRefGoogle Scholar
  237. 237.
    Cheung WY (1970) Cyclic 3′,5′-nucleodide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun 38:533–538PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Kakiuchi S, Yamazaki R (1970) Calcium-dependent phosphodiesterase activity and its activator factor (PAF) from brain. Biochem Biophys Res Commun 41:1104–1110PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Teo TS, Wang JH (1973) Mechanism of activation of a cyclic adenosine 3′,5′-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+-binding protein. J Biol Chem 248:5950–5955PubMedPubMedCentralGoogle Scholar
  240. 240.
    Sorensen AB, Sondergaard MT, Overgaard MT (2013) Calmodulin in a heartbeat. FEBS J 280:5511–5532PubMedCrossRefGoogle Scholar
  241. 241.
    Kursula P (2014) The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 46:2295–2304PubMedCrossRefGoogle Scholar
  242. 242.
    Marshall CB, Nishikawa T, Osawa M et al (2015) Calmodulin and STIM proteins: two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 460:5–21PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Ikeda S, He A, Kong SW et al (2009) Micro RNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Maf2a genes. Mol Cell Biol 29:193–204CrossRefGoogle Scholar
  244. 244.
    Coffee CJ, Bradshaw RA (1973) Carp muscle calcium-binding protein I. Characterization of the tryptic peptides and the complete amino acid sequence of component B. J Biol Chem 248:3305–3312PubMedGoogle Scholar
  245. 245.
    Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature 297:504–506PubMedCrossRefGoogle Scholar
  246. 246.
    Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A 79:7243–7247PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Stuhlfauth I, Reininghaus J, Jockusch H, Heizmann CW (1984) Calcium-binding protein, parvalbumin is reduced in mutant mammalian muscle with abnormal contractile properties. Proc Natl Acad Sci U S A 81:4814–4818PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Schäfer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140CrossRefGoogle Scholar
  249. 249.
    Zimmer DB, Wright-Sadosky P, Weber DJ (2003) Molecular mechanisms of S100-target interactions. Microsc Res Tech 60:552–559PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Heizmann CW, Fritz G (2009) The family of S100 cell signaling proteins. In: Bradshaw RA, Dennis EA (eds) The Handbook Cell Signalling, 2nd edn. Academic, Oxford, pp 983–994Google Scholar
  251. 251.
    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:111–1122CrossRefGoogle Scholar
  252. 252.
    Hermann A, Donato R, Weiger TM, Chazin WJ (2012) S100 calcium binding proteins and ion channels. Front Pharmacol 3:67.  https://doi.org/10.3389/fphar.2012.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Moroz OV, Antson AA, Dodson EJ et al (2002) The structure of S100A12 in a hexameric form and its proposed role in receptor signaling. Acta Cristallogr D Biol Crystallogr 58:407–413CrossRefGoogle Scholar
  254. 254.
    Ostendorp T, Leclerc E, Galichet A et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Engelkamp D, Schäfer BW, Mattei MG, Erne P, Heizmann CW (1993) Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E. Proc Natl Acad Sci U S A 90:6547–6551PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Schäfer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW (1995) Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics 25:638–643PubMedCrossRefGoogle Scholar
  257. 257.
    Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochem Biophys Acta Mol Cell Res 1763:1282–1283CrossRefGoogle Scholar
  258. 258.
    Koch M, Chitayat S, Dattilo BM et al (2010) Structural basis for ligand recognition and activation of RAGE. Structure 18:1342–1352PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H (2013) RAGE-mediated cell signaling. In: Heizmann CW (ed) Calcium-binding proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer Protocols, Humana, New York, pp 239–263CrossRefGoogle Scholar
  260. 260.
    Leclerc E, Vetter S (2015) The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim Biophys Acta 1852:2706–2711PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Jensen LJ, Flyvbjerg A, Bjerre M (2015) Soluble receptor for advanced glycation end product: a biomarker for acute coronary syndrome. Biomed Res Int 2015:815942.  https://doi.org/10.1155/2015/815942 CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Junarek J, Ray R, Banach M, Rai V (2015) Receptor for advanced glycation end-products in neurodegenerative diseases. Rev Neurosci 26:691–698Google Scholar
  263. 263.
    Hiratsuka S, Watanabe A, Sakurai Y et al (2008) The S100A8-serum amyloid A3-TLR-4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355PubMedCrossRefGoogle Scholar
  264. 264.
    Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86:557–566PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Imbalzano E, Mandraffino G, Casciaro M et al (2016) Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: a systematic review. Heart Fail Rev 21(5):463–473PubMedCrossRefGoogle Scholar
  266. 266.
    Wright NT, Cannon BR, Zimmer DB, Weber DJ (2009) S100A1: structure, function, and therapeutic potential. Curr Chem Biol 3:138–145PubMedPubMedCentralGoogle Scholar
  267. 267.
    Duarte-Costa S, Castro-Ferreira R, Neves JS, Leite-Moreira AF (2014) S100A1: a major player in cardiovascular performance. Physiol Res 63:669–681PubMedGoogle Scholar
  268. 268.
    Desjardins JF, Teichert-Kuliszewska K, Parker T (2010) S100A1: a pluripotent regulator of cardiac and vascular function. Can J Cardiol 26(Suppl. A):9A–12APubMedCrossRefGoogle Scholar
  269. 269.
    Du XJ, Cole TJ, Tenis N et al (2002) Impaired cardiac contractility response to hemodynamic stress in S100A1 deficient mice. Mol Cell Biol 22:2821–2829PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Ackermann GE, Domenighetti AA, Deten A et al (2008) S100A1 deficiency results in prolonged ventricular repolarization in response to sympathetic activation. Gen Physiol Biophys 27:127–142PubMedGoogle Scholar
  271. 271.
    Gusev K, Ackermann GE, Heizmann CW, Niggli E (2009) Ca2+ signaling in mouse cardiomyocytes with ablated S100A1 protein. Gen Physiol Biophys 28:371–383PubMedCrossRefGoogle Scholar
  272. 272.
    Brett W, Mandinova A, Remppis A et al (2001) Translocation of S100A1 calcium-binding protein during heart surgery. Biochem Biophys Res Commun 284:698–703PubMedCrossRefGoogle Scholar
  273. 273.
    Kiewitz R, Acklin C, Minder E et al (2000) S100A1, a new marker for acute myocardial ischemia. Biochem Biophys Res Commun 274:865–871PubMedCrossRefGoogle Scholar
  274. 274.
    Schneider M, Kostin S, Strom CC et al (2007) S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovasc Res 75:40–50PubMedCrossRefGoogle Scholar
  275. 275.
    Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci U S A 76:6270–6273PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370PubMedCrossRefGoogle Scholar
  278. 278.
    Feske S, Rao A, Hogan PG (2007) The Ca2+-calcineurin-NAFT signaling pathway in: Krebs J, Michalak M (eds) Calcium: a matter of life or death. Elsevier B.V, Amsterdam, pp 363–401Google Scholar
  279. 279.
    Medyouf H, Ghysdael J (2008) The calcineurin/NFAT signaling pathway. Cell Cycle 7:297–303PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Kobayashi S, Nakamura TY, Wakabayashi S (2015) Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation. J Mol Cell Cardiol 84:133–142PubMedCrossRefGoogle Scholar
  281. 281.
    Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nat Struct Biol 9:239–241PubMedCrossRefGoogle Scholar
  282. 282.
    Zatz M, Starling A (2005) Calpains and disease. New Engl J Med 352:2413–2423PubMedCrossRefGoogle Scholar
  283. 283.
    Campbell RL, Davies PL (2012) Structure-function relationships in calpains. Biochem J 447:335–351PubMedCrossRefGoogle Scholar
  284. 284.
    Osuki K, Shibata H, Maki M (2013) Biochemical and immunological detection of physical interactions between penta-EF-hand protein ALG-2 and its binding partners. In: Heizmann CW (ed) Calcium-binding proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer-Protocols, Humana, New York, pp 187–200CrossRefGoogle Scholar
  285. 285.
    Lei HY, Zhou XL, Ruan ZR et al (2015) Calpain cleaves most components in the multiple aminoacyl-tRNA synthetase complex and affects their functions. J Biol Chem 290:26314–26127PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H (2002) Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim Biophys Acta 1600:51–60PubMedCrossRefGoogle Scholar
  287. 287.
    Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium-cancer signalling nexus. Nat Rev Cancer 17(6):367–380PubMedCrossRefGoogle Scholar
  288. 288.
    Chen H, Xu C, Jin Q, Liu Z (2014) S100 family in human cancer. Am J Cancer Res 4:89–115PubMedPubMedCentralGoogle Scholar
  289. 289.
    Wang T, Huo X, Chong Z et al (2018) A review of S100 protein family in lung cancer. Clin Chim Acta 476:54–59PubMedCrossRefGoogle Scholar
  290. 290.
    Unden J, Romner B (2009) A new objective method for CT triage after minor head injury: serum S100B. Scand J Clin Lab Invest 69:13–17PubMedCrossRefGoogle Scholar
  291. 291.
    Föhr UG, Heizmann CW, Engelkamp D, Schäfer BW, Cox JA (1995) Purification and cation binding properties of the recombinant S100 calcium-binding A3, an EF-hand motif protein with a high affinity for zinc. J Biol Chem 270:21056–21061PubMedCrossRefGoogle Scholar
  292. 292.
    Fritz G, Heizmann CW, Kroneck PM (1998) Probing the structure of the human Ca2+-and Zn2+-binding protein S100A3: spectroscopic investigation of its transition metal ion complexes, and three-dimensional structural model. Biochim Biophys Acta 1448:264–276PubMedCrossRefGoogle Scholar
  293. 293.
    Fritz G, Mittl PR, Vasak M, Grütter MG, Heizmann CW (2002) The crystal structure of the metal-free human EF-hand protein S100A3 at 1.7-A resolution. J Biol Chem 277:33092–33098PubMedCrossRefGoogle Scholar
  294. 294.
    Kizawa K, Unno M, Heizmann CW, Takahara H (2014) Importance of citrullination on hair protein molecular assembly during trichocytic differentiation. In: Nicholas AP, Bhattacharya SK (eds) Protein deimination in human health and disease. Springer, New York, pp 129–148CrossRefGoogle Scholar
  295. 295.
    Wolf R, Mascia F, Dharamsi A et al (2010) Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci Transl Med 2(61):61ra90PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Murray JI, Tonkin ML, Whiting AL et al (2012) Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding. BMC Struct Biol 12:16.  https://doi.org/10.1186/1472-6807-12-16 CrossRefPubMedPubMedCentralGoogle Scholar
  297. 297.
    Loser K, Vogl T, Voskort M et al (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+T cells. Nat Med 16:713–718PubMedCrossRefGoogle Scholar
  298. 298.
    Laouedj M, Tardif MR, Gil L et al (2017) S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood 129:1980–1990PubMedCrossRefGoogle Scholar
  299. 299.
    Ridinger K, Schäfer BW, Durussel I, Cox JA, Heizmann CW (2000) S100A13: biochemical characterization and subcellular localization in different cell lines. J Biol Chem 275:8686–8694PubMedCrossRefGoogle Scholar
  300. 300.
    Hsieh HL, Schäfer BW, Heizmann CW (2002) S100A13 and S100A6 exhibit distinct translocation pathways in endothelial cells. J Cell Sci 115:3149–3158PubMedPubMedCentralGoogle Scholar
  301. 301.
    Marenholz I, Volz A, Ziegler A et al (1996) Gene analysis of the epidermal differentiation complex (EDC) on human chromosome 1q21: chromosomal orientation, new markers, and a 6-mB YAC contig. Genomics 37:295–302PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Kizawa K, Takahara H, Unno M, Heizmann CW (2011) S100 and S100 fused-type protein families in epidermal maturation with special focus on S100A3 in mammalian hair cuticles. Biochimie 93:2038–2047PubMedCrossRefPubMedCentralGoogle Scholar
  303. 303.
    Mlitz V, Strasser B, Jaeger K et al (2014) Trichohyalin-like proteins have evolutionary conserved roles in the morphogenesis of skin appendages. J Invest Dermatol 134(11):2685–2692PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Bunick CG, Presland RB, Lawrence OT et al (2015) Crystal structure of human profilaggrin S100 domain and identification of target proteins annexin II, stratifin, and HSP27. J Invest Dermatol 135(7):1801–1809PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    .Mlitz V, Hussain T, Tschachler E, Eckhart L (2017) Filaggrin has evolved from an, S100 fused-type protein (SFTP) gene present in a common ancestor of amphibians and mammals. Exp Dermatol 26(10):955–957.  https://doi.org/10.1111/exd.13317 CrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Gutierrez-Ford C, Levay K, Gomes AV et al (2003) Characterization of tescalcin, a novel EF-hand protein with a single Ca2+−binding site: metal binding properties, localization in tissues and cells, and effect on calcineurin. Biochemistry 42:14553–14565PubMedCrossRefPubMedCentralGoogle Scholar
  307. 307.
    Kolobynina KG, Solovyova VV, Levay K, Rizanov AA, Slepak VZ (2016) Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci 129(19):3533–3540PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Kang YH, Han SR, Kim JT et al (2014) The EF-hand calcium-binding protein tescalcin is a potential oncotarget in colorectal cancer. Oncotarget 5(8):2149–2160PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Edgeworth J, Gorman M, Benett R et al (1991) Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem 266(12):7706–7713PubMedPubMedCentralGoogle Scholar
  310. 310.
    Roth J, Vogl T, Sorg C, Sunderkotter C (2003) Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 24:155–158PubMedCrossRefPubMedCentralGoogle Scholar
  311. 311.
    Castagnola M, Inzitari R, Fanali C et al (2011) The surprising composition of the salivary proteome of preterm human newborn. Mol Cell Proteomics 10:M110.003467PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Castagnola M, Cabras T, Iavarone F et al (2013) Detection of Ca2+-binding S100 proteins in human saliva by HPLC-ESI-MS. In: Heizmann CW (ed) Calcium-Binding Proteins and RAGE: from structural basics to clinical applications, Methods in molecular biology, vol 963. Springer Protocols, Humana, New York, pp 357–371CrossRefGoogle Scholar
  313. 313.
    Ringer A (1883) A further contribution regarding the influence of different constituents of the blood on the concentration of the heart. J Physiol 4:29–43PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Hamoir G, Focant B, Distèche M (1972) Proteinic criteria of differentiation of white, cardiac and various red muscles in carp. Comp Biochem Physiol B 41(4):665–674PubMedCrossRefPubMedCentralGoogle Scholar
  315. 315.
    Pechère JF, Demaille J, Capony JP (1971) Muscular parvalbumins: preparative and analytical methods of general applicability. Biochim Biophys Acta 236(2):391–408PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 189:739–744CrossRefGoogle Scholar
  317. 317.
    Cavalier MC, Pierce AD, Wilder PT et al (2014) Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry 53(42):6628–6640PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Lee DH, Asare BK, Rajnarayanan RV (2016) Discovery at the interface: towards novel anti-proliferative agents targeting human estrogen receptor/S100 interactions. Cell Cycle 15(20):2806–2818PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Padilla L, Dakhel S, Hernadez JL (2014) S100 to receptor for advanced glycation end-products binding assay: looking for inhibitors. Biochem Biophys Res Comm 446:404–409PubMedCrossRefPubMedCentralGoogle Scholar
  320. 320.
    Grum-Schwensen B, Klingelhöfer J, Beck M (2015) S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance. BMC Cancer 15:44.  https://doi.org/10.1186/s12885-015-1034-2 CrossRefPubMedPubMedCentralGoogle Scholar
  321. 321.
    Cho CC, Chou RH, Yu C (2016) Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway. Biochem Biophys Commun 477(2):188–194CrossRefGoogle Scholar
  322. 322.
    Martínez-Aguilar J, Molloy MP (2019) Targeted mass spectrometry of S100 proteins. In: Heizmann CW (ed) Calcium-binding proteins of the EF-hand superfamily: from basics to medical applications, Methods in molecular biology, vol 1929. Springer Protocols, Humana, New York (in press)Google Scholar
  323. 323.
    Gatterdam V, Frutiger A, Stengele KP et al (2017) Focal molography is a new method for the in situ analysis of molecular interactions in biological samples. Nat Nanotechnol 12(11):1089–1095PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Claus W. Heizmann
    • 1
  1. 1.Department of Pediatrics, Division of Clinical Chemistry and BiochemistryUniversity of ZürichZürichSwitzerland

Personalised recommendations