Using Data Mining to Explore Calmodulin Bibliography

  • Jacques HaiechEmail author
  • Marie-Claude Kilhoffer
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)


In this chapter, we present a strategy and the techniques to approach a scientific field from a set of articles gathered from the bibliographic database “Web of Science.” The strategy is based on methods developed to analyze social networks. We illustrate its use in studying the calmodulin field. The method allows to structure a huge number of articles when writing a review, to detect the key opinion leaders in a given field, and to locate their own research topic in the landscape of themes deciphered by our own community.

We show that the free software VOSviewer may be used without knowledge in computing science and with a short learning period.

Key words

Data mining Scientometry Calcium signal Calmodulin Social network analysis 

Supplementary material

456949_1_En_1_MOESM1_ESM.txt (8 kb)
Supplementary Material S1 (TXT 9 kb)


  1. 1.
    Raimbault B, Cointet JP, Joly PB (2016) Mapping the emergence of synthetic biology. PLoS One 11(9):e0161522CrossRefGoogle Scholar
  2. 2.
    Vellay SG, Latimer NE, Paillard G (2009) Interactive text mining with Pipeline Pilot: a bibliographic web-based tool for PubMed. Infect Disord Drug Targets 9(3):366–374CrossRefGoogle Scholar
  3. 3.
    Li K, Rollins J, Yan E (2018) Web of Science use in published research and review papers 1997-2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics 115(1):1–20CrossRefGoogle Scholar
  4. 4.
    van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538CrossRefGoogle Scholar
  5. 5.
    Berchtold MW, Villalobo A (2014) The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta 1843(2):398–435CrossRefGoogle Scholar
  6. 6.
    Haiech J, Kilhoffer MC, Craig TA et al (1990) Mutant analysis approaches to understanding calcium signal transduction through calmodulin and calmodulin regulated enzymes. Adv Exp Med Biol 269:43–56CrossRefGoogle Scholar
  7. 7.
    Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B 86(11):471CrossRefGoogle Scholar
  8. 8.
    Klavans R, Boyack KW (2017) Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge? J Assoc Inf Sci Technol 68(4):984–998CrossRefGoogle Scholar
  9. 9.
    Weinberg BH (1974) Bibliographic coupling: a review. Inf Stor Retr 10(5):189–196CrossRefGoogle Scholar
  10. 10.
    Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207(4426):19–27CrossRefGoogle Scholar
  11. 11.
    Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Annu Rev Biochem 49:489–515CrossRefGoogle Scholar
  12. 12.
    Ikura M, Clore GM, Gronenborn AM et al (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256(5057):632–638CrossRefGoogle Scholar
  13. 13.
    Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257(5074):1251–1255CrossRefGoogle Scholar
  14. 14.
    Hanson PI, Schulman H (1992) Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 61:559–601CrossRefGoogle Scholar
  15. 15.
    Miller SG, Kennedy MB (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+−triggered molecular switch. Cell 44(6):861–870CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS UMR7242 BSC, ESBSIllkirch CedexFrance

Personalised recommendations