Advertisement

Overview of Characterizing Cancer Glycans with Lectin-Based Analytical Methods

  • Amanda J. Pearson
  • Elyssia S. GallagherEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)

Abstract

Glycosylation is a post-translational modification that is often altered in disease development and progression, including cancer. In cancerous patients, the abnormal expression of glycosylation enzymes leads to aberrant glycosylation, which has been linked to malignant tissues. Due to aberrant glycosylation, the presence of specific glycans can be used as biomarkers for identifying the type and stage of cancer. Glycan structures are heterogeneous, with different protein glycoforms having different functional activities. Lectins are an important tool in glycan analysis due to their specificity in binding to unique glycan linkages and monosaccharide units, which allows for the identification of unique glycan structural properties. In this review, we will discuss the use of lectins in microarrays and chromatography for characterizing glycan structures.

Key words

Lectin Cancer Glycan Glycosylation Microarray Affinity chromatography 

References

  1. 1.
    Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462.  https://doi.org/10.1038/nrm3383CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474(14):2333–2347.  https://doi.org/10.1042/BCJ20170111CrossRefPubMedGoogle Scholar
  3. 3.
    Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13.  https://doi.org/10.1016/j.jaut.2014.12.002CrossRefPubMedGoogle Scholar
  4. 4.
    Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51.  https://doi.org/10.1016/bs.acr.2014.11.001CrossRefPubMedGoogle Scholar
  5. 5.
    Freeze HH, Schachter H, Kinoshita T (2015) Genetic disorders of glycosylation. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York.  https://doi.org/10.1101/glycobiology.3e.045CrossRefGoogle Scholar
  6. 6.
    Varki A, Kornfeld S (2015) Historical Background and Overview. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York.  https://doi.org/10.1101/glycobiology.3e.001CrossRefGoogle Scholar
  7. 7.
    Kailemia MJ, Park D, Lebrilla CB (2017) Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 409(2):395–410.  https://doi.org/10.1007/s00216-016-9880-6CrossRefPubMedGoogle Scholar
  8. 8.
    Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y (2017) Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38(17):2100–2114.  https://doi.org/10.1002/elps.201700042CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mechref Y (2011) Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 32(24):3467–3481.  https://doi.org/10.1002/elps.201100342CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Suzuki S (2013) Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal Sci 29(12):1117–1128CrossRefGoogle Scholar
  11. 11.
    Furukawa J, Fujitani N, Shinohara Y (2013) Recent advances in cellular glycomic analyses. Biomol Ther 3(1):198–225.  https://doi.org/10.3390/biom3010198CrossRefGoogle Scholar
  12. 12.
    Shajahan A, Heiss C, Ishihara M, Azadi P (2017) Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 409(19):4483–4505.  https://doi.org/10.1007/s00216-017-0406-7CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nizet V, Varki A, Aebi M (2015) Microbial lectins: hemagglutinins, adhesins, and toxins. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 481–491.  https://doi.org/10.1101/glycobiology.3e.037CrossRefGoogle Scholar
  14. 14.
    Lam SK, Ng TB (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89(1):45–55.  https://doi.org/10.1007/s00253-010-2892-9CrossRefPubMedGoogle Scholar
  15. 15.
    Gemeiner P, Mislovicova D, Tkac J, Svitel J, Patoprsty V, Hrabarova E, Kogan G, Kozar T (2009) Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27(1):1–15.  https://doi.org/10.1016/j.biotechadv.2008.07.003CrossRefPubMedGoogle Scholar
  16. 16.
    Taylor ME, Drickamer K, Schnaar RL, Etzler ME, Varki A (2015) Discovery and Classification of Glycan-Binding Proteins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY.  https://doi.org/10.1101/glycobiology.3e.028CrossRefGoogle Scholar
  17. 17.
    Bicker KL, Sun J, Harrell M, Zhang Y, Pena MM, Thompson PR, Lavigne JJ (2012) Synthetic lectin arrays for the detection and discrimination of cancer associated glycans and cell lines. Chem Sci 3(4):1147–1156.  https://doi.org/10.1039/c2sc00790hCrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zou Y, Broughton DL, Bicker KL, Thompson PR, Lavigne JJ (2007) Peptide borono lectins (PBLs): a new tool for glycomics and cancer diagnostics. Chembiochem 8(17):2048–2051.  https://doi.org/10.1002/cbic.200700221CrossRefPubMedGoogle Scholar
  19. 19.
    Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 130(38):12636–12638.  https://doi.org/10.1021/ja801510dCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rini J, Esko J, Varki A (2009) Glycosyltransferases and glycan-processing enzymes. In: nd VA, Cummings RD et al (eds) Essentials of Glycobiology. Cold Spring Harbor, NYGoogle Scholar
  21. 21.
    Ednie AR, Bennett ES (2012) Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2(2):1269–1301.  https://doi.org/10.1002/cphy.c110044CrossRefPubMedGoogle Scholar
  22. 22.
    Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY.  https://doi.org/10.1101/glycobiology.3e.009CrossRefGoogle Scholar
  23. 23.
    Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21(3):149–158.  https://doi.org/10.1016/j.tcb.2010.11.004CrossRefPubMedGoogle Scholar
  24. 24.
    Gabius HJ (2006) Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 26(1):43–79CrossRefGoogle Scholar
  25. 25.
    Hoja-Lukowicz D, Przybylo M, Duda M, Pochec E, Bubka M (2017) On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta 1861(1 Pt A):3237–3257.  https://doi.org/10.1016/j.bbagen.2016.08.007CrossRefGoogle Scholar
  26. 26.
    Rambaruth ND, Dwek MV (2011) Cell surface glycan-lectin interactions in tumor metastasis. Acta Histochem 113(6):591–600.  https://doi.org/10.1016/j.acthis.2011.03.001CrossRefPubMedGoogle Scholar
  27. 27.
    Gagneux P, Aebi M, Varki A (2015) Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY.  https://doi.org/10.1101/glycobiology.3e.020CrossRefGoogle Scholar
  28. 28.
    Higel F, Seidl A, Sorgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 100:94–100.  https://doi.org/10.1016/j.ejpb.2016.01.005CrossRefPubMedGoogle Scholar
  29. 29.
    Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542.  https://doi.org/10.1038/nrc1649CrossRefPubMedGoogle Scholar
  30. 30.
    Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555.  https://doi.org/10.1038/nrc3982CrossRefPubMedGoogle Scholar
  31. 31.
    Meany DL, Chan DW (2011) Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 8(1):7.  https://doi.org/10.1186/1559-0275-8-7CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152.  https://doi.org/10.1016/j.semcancer.2017.03.002CrossRefPubMedGoogle Scholar
  33. 33.
    Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y (2017) Glycosylation changes in brain cancer. ACS Chem Neurosci.  https://doi.org/10.1021/acschemneuro.7b00271CrossRefGoogle Scholar
  34. 34.
    Varki A, Kannagi R, Toole BP (2009) Glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, NYGoogle Scholar
  35. 35.
    Magnelli P, McClung C Proteomics: fast and efficient antibody deglycosylation using rapid PNGase F. New England Biolabs Inc Glycobiology & Protein Tools (Appl. Note)Google Scholar
  36. 36.
    Maley F, Trimble RB, Tarentino AL, Plummer TH, Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180 (2):195–204CrossRefGoogle Scholar
  37. 37.
    Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 304(1):70–90.  https://doi.org/10.1006/abio.2002.5619CrossRefPubMedGoogle Scholar
  38. 38.
    Kang JG, Ko JH, Kim YS (2016) Application of cancer-associated glycoforms and glycan-binding probes to an in vitro diagnostic multivariate index assay for precise diagnoses of cancer. Proteomics 16(24):3062–3072.  https://doi.org/10.1002/pmic.201500553CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60.  https://doi.org/10.1038/nrc1251CrossRefPubMedGoogle Scholar
  40. 40.
    Hirao Y, Matsuzaki H, Iwaki J, Kuno A, Kaji H, Ohkura T, Togayachi A, Abe M, Nomura M, Noguchi M, Ikehara Y, Narimatsu H (2014) Glycoproteomics approach for identifying Glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J Proteome Res 13(11):4705–4716.  https://doi.org/10.1021/pr5006668CrossRefPubMedGoogle Scholar
  41. 41.
    Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 4(6):477–488.  https://doi.org/10.1038/nrd1751CrossRefPubMedGoogle Scholar
  42. 42.
    Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236(4801):582–585CrossRefGoogle Scholar
  43. 43.
    Abbott KL, Lim JM, Wells L, Benigno BB, McDonald JF, Pierce M (2010) Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics 10(3):470–481.  https://doi.org/10.1002/pmic.200900537CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Abbott KL, Nairn AV, Hall EM, Horton MB, McDonald JF, Moremen KW, Dinulescu DM, Pierce M (2008) Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 8(16):3210–3220.  https://doi.org/10.1002/pmic.200800157CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73(1):42–49CrossRefGoogle Scholar
  46. 46.
    Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer 73(1):50–56CrossRefGoogle Scholar
  47. 47.
    Toth E, Vekey K, Ozohanics O, Jeko A, Dominczyk I, Widlak P, Drahos L (2016) Changes of protein glycosylation in the course of radiotherapy. J Pharm Biomed Anal 118:380–386.  https://doi.org/10.1016/j.jpba.2015.11.010CrossRefPubMedGoogle Scholar
  48. 48.
    Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153.  https://doi.org/10.1146/annurev.bioeng.4.020702.153438CrossRefPubMedGoogle Scholar
  49. 49.
    Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167.  https://doi.org/10.1016/j.mad.2006.11.021CrossRefPubMedGoogle Scholar
  50. 50.
    Cretich M, Damin F, Chiari M (2014) Protein microarray technology: how far off is routine diagnostics? Analyst 139(3):528–542.  https://doi.org/10.1039/c3an01619fCrossRefPubMedGoogle Scholar
  51. 51.
    Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15(1):31–41.  https://doi.org/10.1093/glycob/cwh143CrossRefPubMedGoogle Scholar
  52. 52.
    Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6(6):985–989.  https://doi.org/10.1002/cbic.200400403CrossRefPubMedGoogle Scholar
  53. 53.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2(11):851–856.  https://doi.org/10.1038/nmeth803CrossRefPubMedGoogle Scholar
  54. 54.
    Chen S, Zheng T, Shortreed MR, Alexander C, Smith LM (2007) Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem 79(15):5698–5702.  https://doi.org/10.1021/ac070423kCrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li Y, Tao SC, Bova GS, Liu AY, Chan DW, Zhu H, Zhang H (2011) Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 83(22):8509–8516.  https://doi.org/10.1021/ac201452fCrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Landemarre L, Cancellieri P, Duverger E (2013) Cell surface lectin array: parameters affecting cell glycan signature. Glycoconj J 30(3):195–203.  https://doi.org/10.1007/s10719-012-9433-yCrossRefPubMedGoogle Scholar
  57. 57.
    Chen P, Liu Y, Kang X, Sun L, Yang P, Tang Z (2008) Identification of N-glycan of alpha-fetoprotein by lectin affinity microarray. J Cancer Res Clin Oncol 134(8):851–860.  https://doi.org/10.1007/s00432-008-0357-7CrossRefPubMedGoogle Scholar
  58. 58.
    Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18(10):761–769.  https://doi.org/10.1093/glycob/cwn063CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Microarrayers NanoPrint. (2017) Arrayit Corporation. http://www.arrayit.com/Products/Microarrayers/Microarray_Printer/microarray_printer.html. Accessed November 2017
  60. 60.
    Fry SA, Afrough B, Lomax-Browne HJ, Timms JF, Velentzis LS, Leathem AJ (2011) Lectin microarray profiling of metastatic breast cancers. Glycobiology 21(8):1060–1070.  https://doi.org/10.1093/glycob/cwr045CrossRefPubMedGoogle Scholar
  61. 61.
    Leymarie N, Zaia J (2012) Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 84(7):3040–3048.  https://doi.org/10.1021/ac3000573CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113(3):236–247.  https://doi.org/10.1016/j.acthis.2010.02.004CrossRefPubMedGoogle Scholar
  63. 63.
    Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3(9):1593–1608.  https://doi.org/10.1039/b414350gCrossRefPubMedGoogle Scholar
  64. 64.
    Davis AP (2009) Synthetic lectins. Org Biomol Chem 7(18):3629–3638.  https://doi.org/10.1039/b909856aCrossRefPubMedGoogle Scholar
  65. 65.
    Houston TA (2010) Developing high-affinity boron-based receptors for cell-surface carbohydrates. Chembiochem 11(7):954–957.  https://doi.org/10.1002/cbic.201000079CrossRefPubMedGoogle Scholar
  66. 66.
    Brighid Pappin MJK, Houston TA (2012) Boron-carbohydrate interactions. Comp Stud Glycobiol Glycotechnol. Doi: https://doi.org/10.5772/50630Google Scholar
  67. 67.
    Arnaud J, Audfray A, Imberty A (2013) Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 42(11):4798–4813.  https://doi.org/10.1039/c2cs35435gCrossRefPubMedGoogle Scholar
  68. 68.
    Sun X, Zhai W, Fossey JS, James TD (2016) Boronic acids for fluorescence imaging of carbohydrates. Chem Commun (Camb) 52(17):3456–3469.  https://doi.org/10.1039/c5cc08633gCrossRefGoogle Scholar
  69. 69.
    Li S, Mo C, Peng Q, Kang X, Sun C, Jiang K, Huang L, Lu Y, Sui J, Qin X, Liu Y (2013) Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS One 8(8):e71273.  https://doi.org/10.1371/journal.pone.0071273CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ito H, Kuno A, Sawaki H, Sogabe M, Ozaki H, Tanaka Y, Mizokami M, Shoda J, Angata T, Sato T, Hirabayashi J, Ikehara Y, Narimatsu H (2009) Strategy for glycoproteomics: identification of glyco-alteration using multiple glycan profiling tools. J Proteome Res 8(3):1358–1367.  https://doi.org/10.1021/pr800735jCrossRefPubMedGoogle Scholar
  71. 71.
    Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, Guo S, Liu Y, Diao H, Shi H, Wang G, Tao SC (2016) A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Mol Cell Proteomics 15(9):2839–2851.  https://doi.org/10.1074/mcp.M116.059311CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481.  https://doi.org/10.1007/s00216-010-3532-zCrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Korekane H, Shida K, Murata K, Ohue M, Sasaki Y, Imaoka S, Miyamoto Y (2007) Evaluation of laser microdissection as a tool in cancer glycomic studies. Biochem Biophys Res Commun 352(3):579–586.  https://doi.org/10.1016/j.bbrc.2006.10.191CrossRefPubMedGoogle Scholar
  74. 74.
    Murray GI (2007) An overview of laser microdissection technologies. Acta Histochem 109(3):171–176.  https://doi.org/10.1016/j.acthis.2007.02.001CrossRefPubMedGoogle Scholar
  75. 75.
    Sturm D, Marselli L, Ehehalt F, Richter D, Distler M, Kersting S, Grutzmann R, Bokvist K, Froguel P, Liechti R, Jorns A, Meda P, Baretton GB, Saeger HD, Schulte AM, Marchetti P, Solimena M (2013) Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. J Vis Exp (71). doi: https://doi.org/10.3791/50231
  76. 76.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603.  https://doi.org/10.1038/nprot.2006.85CrossRefPubMedGoogle Scholar
  77. 77.
    Kuno A, Matsuda A, Ikehara Y, Narimatsu H, Hirabayashi J (2010) Differential glycan profiling by lectin microarray targeting tissue specimens. Methods Enzymol 478:165–179.  https://doi.org/10.1016/S0076-6879CrossRefPubMedGoogle Scholar
  78. 78.
    Koshi Y, Nakata E, Yamane H, Hamachi I (2006) A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc 128(32):10413–10422.  https://doi.org/10.1021/ja0613963CrossRefPubMedGoogle Scholar
  79. 79.
    Lehr HP, Reimann M, Brandenburg A, Sulz G, Klapproth H (2003) Real-time detection of nucleic acid interactions by total internal reflection fluorescence. Anal Chem 75(10):2414–2420CrossRefGoogle Scholar
  80. 80.
    Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006) Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol 415:341–351.  https://doi.org/10.1016/S0076-6879(06)15021-1CrossRefPubMedGoogle Scholar
  81. 81.
    Uchiyama N, Kuno A, Tateno H, Kubo Y, Mizuno M, Noguchi M, Hirabayashi J (2008) Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics 8(15):3042–3050.  https://doi.org/10.1002/pmic.200701114CrossRefPubMedGoogle Scholar
  82. 82.
    Zhao R, Liu X, Wang Y, Jie X, Qin R, Qin W, Zhang M, Tai H, Yang C, Li L, Peng P, Shao M, Zhang X, Wu H, Ruan Y, Xu C, Ren S, Gu J (2016) Integrated glycomic analysis of ovarian cancer side population cells. Clin Proteomics 13:32.  https://doi.org/10.1186/s12014-016-9131-zCrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J (2008) Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun 370(2):259–263.  https://doi.org/10.1016/j.bbrc.2008.03.090CrossRefPubMedGoogle Scholar
  84. 84.
    Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007) A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17(10):1138–1146.  https://doi.org/10.1093/glycob/cwm084CrossRefPubMedGoogle Scholar
  85. 85.
    Ltd. G (2016) GlycoTechnia Ltd. http://www.glycotechnica.com/english/products.htm. Accessed Oct 2017
  86. 86.
    Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127(28):9982–9983.  https://doi.org/10.1021/ja0505550CrossRefPubMedGoogle Scholar
  87. 87.
    Pilobello KT, Slawek DE, Mahal LK (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 104(28):11534–11539.  https://doi.org/10.1073/pnas.0704954104CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pilobello KT, Agrawal P, Rouse R, Mahal LK (2013) Advances in lectin microarray technology: optimized protocols for piezoelectric print conditions. Curr Protoc Chem Biol 5(1):1–23.  https://doi.org/10.1002/9780470559277.ch120035CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Fromell K, Andersson M, Elihn K, Caldwell KD (2005) Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B Biointerfaces 46(2):84–91.  https://doi.org/10.1016/j.colsurfb.2005.06.017CrossRefPubMedGoogle Scholar
  90. 90.
    Burtis CA, Ashwood ER, Tietz NW (1999) Tietz textbook of clinical chemistry, 3rd edn. W.B. Saunders, New YorkGoogle Scholar
  91. 91.
    MSaM B (2015) Glycosylation in cell culture. In: Al-Rubeai M (ed) Animal cell culture. Springer, NY, pp 237–258Google Scholar
  92. 92.
    Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182.  https://doi.org/10.1016/S0076-6879(06)16011-5CrossRefPubMedGoogle Scholar
  93. 93.
    North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285(8):5759–5775.  https://doi.org/10.1074/jbc.M109.068353CrossRefPubMedGoogle Scholar
  94. 94.
    Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F (2011) Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 706(2):205–222.  https://doi.org/10.1016/j.aca.2011.08.038CrossRefPubMedGoogle Scholar
  95. 95.
    Cheung RC, Wong JH, Ng TB (2012) Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 96(6):1411–1420.  https://doi.org/10.1007/s00253-012-4507-0CrossRefPubMedGoogle Scholar
  96. 96.
    Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B Analyt Technol Biomed Life Sci 910:2–13.  https://doi.org/10.1016/j.jchromb.2012.01.020CrossRefPubMedGoogle Scholar
  97. 97.
    Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405(7):2133–2145.  https://doi.org/10.1007/s00216-012-6568-4CrossRefPubMedGoogle Scholar
  98. 98.
    Yamashita K, Ohkura T (2014) Determination of glycan motifs using serial lectin affinity chromatography. Methods Mol Biol 1200:79–92.  https://doi.org/10.1007/978-1-4939-1292-6_7CrossRefPubMedGoogle Scholar
  99. 99.
    Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2007) Frontal affinity chromatography: sugar-protein interactions. Nat Protoc 2(10):2529–2537.  https://doi.org/10.1038/nprot.2007.357CrossRefPubMedGoogle Scholar
  100. 100.
    Zeng Z, Hincapie M, Pitteri SJ, Hanash S, Schalkwijk J, Hogan JM, Wang H, Hancock WS (2011) A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 83(12):4845–4854.  https://doi.org/10.1021/ac2002802CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Jung K, Cho W, Regnier FE (2009) Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J Proteome Res 8(2):643–650.  https://doi.org/10.1021/pr8007495CrossRefPubMedGoogle Scholar
  102. 102.
    Song E, Zhu R, Hammoud ZT, Mechref Y (2014) LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res 13(11):4808–4820.  https://doi.org/10.1021/pr500570mCrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, Cho W, Braten M, Inerowicz HD, Williams K, Albertolle M, Held JM, Iacovides D, Sorensen DJ, Griffith OL, Johansen E, Zawadzka AM, Cusack MP, Allen S, Gormley M, Hall SC, Witkowska HE, Gray JW, Regnier F, Gibson BW, Fisher SJ (2012) Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res 11(4):2508–2520.  https://doi.org/10.1021/pr201206wCrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Cummings RD, Kornfeld S (1982) Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem 257(19):11235–11240PubMedGoogle Scholar
  105. 105.
    Lehoux S, Ju T (2017) Separation of two distinct O-glycoforms of human IgA1 by serial lectin chromatography followed by mass spectrometry O-glycan analysis. Methods Enzymol 585:61–75.  https://doi.org/10.1016/bs.mie.2016.10.003CrossRefPubMedGoogle Scholar
  106. 106.
    Kasai K, Oda Y, Nishikata M, Ishii S (1986) Frontal affinity chromatography: theory for its application to studies on specific interactions of biomolecules. J Chromatogr 376:33–47CrossRefGoogle Scholar
  107. 107.
    Kasai K (2014) Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology. Proc Jpn Acad Ser B Phys Biol Sci 90(7):215–234CrossRefGoogle Scholar
  108. 108.
    Nakamura-Tsuruta S, Uchiyama N, Hirabayashi J (2006) High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography. Methods Enzymol 415:311–325.  https://doi.org/10.1016/S0076-6879(06)15019-3CrossRefPubMedGoogle Scholar
  109. 109.
    Hirabayashi J, Arata Y, Kasai K (2003) Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol 362:353–368CrossRefGoogle Scholar
  110. 110.
    Arata Y, Hirabayashi J, Kasai KI (2001) Application of reinforced frontal affinity chromatography and advanced processing procedure to the study of the binding property of a Caenorhabditis elegans galectin. J Chromatogr A 905(1–2):337–343CrossRefGoogle Scholar
  111. 111.
    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryBaylor UniversityWacoUSA

Personalised recommendations