Metabolite Profiling of Clinical Cancer Biofluid Samples by NMR Spectroscopy

  • Beata Mickiewicz
  • M. Eric Hyndman
  • Hans J. VogelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)


Metabolomics is a comprehensive characterization of the small polar molecules (metabolites) in different biological systems. One of the analytical platforms commonly used to study metabolic alterations in biofluid samples is proton nuclear magnetic resonance (1H NMR) spectroscopy. NMR spectroscopy is very specific, quantitative, and highly reproducible. Moreover, sample preparation for NMR experiments is very simple and straightforward, and this gives NMR spectroscopy a distinct advantage over other metabolic profiling methods. It has already been shown that 1H NMR-based profiling of biological fluids can be effective in differentiating benign from malignant lesions and in investigating the efficacy of specific cancer treatments. Therefore, 1H NMR spectroscopy may become a promising tool for early noninvasive diagnosis and rapid assessment of treatment effects in cancer patients. Here, we describe a detailed protocol for 1H NMR metabolite profiling in serum, plasma, and urine samples, including sample collection procedures, sample preparation for 1H NMR experiments, spectral acquisition and processing, and quantitative profiling of 1H NMR spectra. We also discuss several aspects of appropriate study design and some multivariate statistical methods that are commonly used to analyze metabolomics datasets.

Key words

Metabolomics 1H NMR Quantitative profiling Cancer Serum Plasma Urine 



This work was funded by a CRIO-Cancer Grant from Alberta Innovates Health Solutions. We are indebted to all our colleagues that provided clinical samples, and especially to Drs. Aalim Weljie, Farshad Farshidfar, and Karen Kopciuk for discussions about methodology.


  1. 1.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314CrossRefGoogle Scholar
  2. 2.
    Otto AM (2016) Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab 4:5PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wolpaw AJ, Dang CV (2018) MYC-induced metabolic stress and tumorigenesis. Biochim Biophys Acta Rev Cancer 1870(1):43–50CrossRefGoogle Scholar
  4. 4.
    Dowell AC, Cobby E, Wen K, Devall AJ, During V, Anderson J, James ND, Cheng KK, Zeegers MP, Bryan RT, Taylor GS (2017) Interleukin-17-positive mast cells influence outcomes from BCG for patients with CIS: data from a comprehensive characterisation of the immune microenvironment of urothelial bladder cancer. PLoS One 12(9):e0184841PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Srinivasan R, Ricketts CJ, Sourbier C, Linehan WM (2015) New strategies in renal cell carcinoma: targeting the genetic and metabolic basis of disease. Clin Cancer Res 21(1):10–17PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Yang G, Shen W, Zhang Y, Liu M, Zhang L, Liu Q, Lu HH, Bo J (2017) Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget 8(24):38378–38388PubMedCentralPubMedGoogle Scholar
  7. 7.
    Townsend MK, Bao Y, Poole EM, Bertrand KA, Kraft P, Wolpin BM, Clish CB, Tworoger SS (2016) Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiol Biomarkers Prev 25(5):823–829PubMedCentralCrossRefGoogle Scholar
  8. 8.
    Xiao Q, Moore SC, Boca SM, Matthews CE, Rothman N, Stolzenberg-Solomon RZ, Sinha R, Cross AJ, Sampson JN (2014) Sources of variability in metabolite measurements from urinary samples. PLoS One 9(5):e95749PubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, Tan YT, Ji BT, Chow WH, Cai Q, Liu DK, Yang G, Xiang YB, Zheng W, Sinha R, Cross AJ, Moore SC (2013) Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomarkers Prev 22(4):631–640PubMedCentralCrossRefGoogle Scholar
  10. 10.
    The 5 Core Elements of a Successful Metabolomics Study. Metabolon Inc. Accessed 30 May 2018
  11. 11.
    Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40(1):387–426CrossRefGoogle Scholar
  12. 12.
    Bathe OF, Shaykhutdinov R, Kopciuk K, Weljie AM, McKay A, Sutherland FR, Dixon E, Dunse N, Sotiropoulos D, Vogel HJ (2011) Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol Biomarkers Prev 20(1):140–147CrossRefGoogle Scholar
  13. 13.
    Falegan OS, Ball MW, Shaykhutdinov RA, Pieroraio PM, Farshidfar F, Vogel HJ, Allaf ME, Hyndman ME (2017) Urine and serum metabolomics analyses may distinguish between stages of renal cell carcinoma. Metabolites 7(1):6PubMedCentralCrossRefGoogle Scholar
  14. 14.
    Farshidfar F, Weljie AM, Kopciuk K, Buie WD, Maclean A, Dixon E, Sutherland FR, Molckovsky A, Vogel HJ, Bathe OF (2012) Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med 4(5):42PubMedCentralCrossRefGoogle Scholar
  15. 15.
    McConnell YJ, Farshidfar F, Weljie AM, Kopciuk KA, Dixon E, Ball CG, Sutherland FR, Vogel HJ, Bathe OF (2017) Distinguishing benign from malignant pancreatic and periampullary lesions using combined use of (1)H-NMR spectroscopy and gas chromatography-mass spectrometry. Metabolites 7(1):3PubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lindon JC, Nicholson JK, Holmes E, Everett JR (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12(5):289–320CrossRefGoogle Scholar
  17. 17.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703CrossRefGoogle Scholar
  18. 18.
    An YJ, Cho HR, Kim TM, Keam B, Kim JW, Wen H, Park CK, Lee SH, Im SA, Kim JE, Choi SH, Park S (2015) An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients. Int J Cancer 136(1):162–171CrossRefGoogle Scholar
  19. 19.
    Roberts MJ, Richards RS, Chow CWK, Buck M, Yaxley J, Lavin MF, Schirra HJ, Gardiner RA (2017) Seminal plasma enables selection and monitoring of active surveillance candidates using nuclear magnetic resonance-based metabolomics: a preliminary investigation. Prostate Int 5(4):149–157PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang J, Ma C, Liao Z, Tian B, Lu JP (2011) Study on chronic pancreatitis and pancreatic cancer using MRS and pancreatic juice samples. World J Gastroenterol 17(16):2126–2130PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mickiewicz B, Kelly JJ, Ludwig TE, Weljie AM, Wiley JP, Schmidt TA, Vogel HJ (2015) Metabolic analysis of knee synovial fluid as a potential diagnostic approach for osteoarthritis. J Orthop Res 33(11):1631–1638CrossRefGoogle Scholar
  22. 22.
    Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78(13):4430–4442CrossRefGoogle Scholar
  23. 23.
    Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC (1995) 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67(5):793–811CrossRefGoogle Scholar
  24. 24.
    Van QN, Chmurny GN, Veenstra TD (2003) The depletion of protein signals in metabonomics analysis with the WET-CPMG pulse sequence. Biochem Biophys Res Commun 301(4):952–959CrossRefGoogle Scholar
  25. 25.
    Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32(13):2183–2199CrossRefGoogle Scholar
  26. 26.
    Tiziani S, Emwas AH, Lodi A, Ludwig C, Bunce CM, Viant MR, Gunther UL (2008) Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal Biochem 377(1):16–23CrossRefGoogle Scholar
  27. 27.
    Daykin CA, Foxall PJ, Connor SC, Lindon JC, Nicholson JK (2002) The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear magnetic resonance spectroscopy. Anal Biochem 304(2):220–230CrossRefGoogle Scholar
  28. 28.
    Zhang B, Xie M, Bruschweiler-Li L, Bruschweiler R (2016) Nanoparticle-assisted removal of protein in human serum for metabolomics studies. Anal Chem 88(1):1003–1007CrossRefGoogle Scholar
  29. 29.
    Ludwig C, Viant MR (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 21(1):22–32CrossRefGoogle Scholar
  30. 30.
    Kruk J, Doskocz M, Jodlowska E, Zacharzewska A, Lakomiec J, Czaja K, Kujawski J (2017) NMR techniques in metabolomic studies: a quick overview on examples of utilization. Appl Magn Reson 48(1):1–21CrossRefGoogle Scholar
  31. 31.
    Lewis IA, Schommer SC, Hodis B, Robb KA, Tonelli M, Westler WM, Sussman MR, Markley JL (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal Chem 79(24):9385–9390PubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fan TW-M (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28(2):161–219CrossRefGoogle Scholar
  33. 33.
    Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6(2):469–479CrossRefGoogle Scholar
  34. 34.
    Euceda LR, Giskeodegard GF, Bathen TF (2015) Preprocessing of NMR metabolomics data. Scand J Clin Lab Invest 75(3):193–203CrossRefGoogle Scholar
  35. 35.
    van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142PubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nagana Gowda GA, Raftery D (2017) Recent advances in NMR-based metabolomics. Anal Chem 89(1):490–510CrossRefGoogle Scholar
  37. 37.
    Wurtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M (2017) Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am J Epidemiol 186(9):1084–1096PubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fischer K, Kettunen J, Wurtz P, Haller T, Havulinna AS, Kangas AJ, Soininen P, Esko T, Tammesoo ML, Magi R, Smit S, Palotie A, Ripatti S, Salomaa V, Ala-Korpela M, Perola M, Metspalu A (2014) Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med 11(2):e1001606PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brockton NT, Gill SJ, Laborge SL, Paterson AH, Cook LS, Vogel HJ, Shemanko CS, Hanley DA, Magliocco AM, Friedenreich CM (2015) The breast cancer to bone (B2B) metastases research program: a multi-disciplinary investigation of bone metastases from breast cancer. BMC Cancer 15:512PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mickiewicz B, Arnold Egloff S, Eskaros AH, Clark PE, Zijlstra A, Vogel HJ, Hyndman ME (2018) Metabolomics of bladder cancer: from metabolic data to clinical diagnosis and prognosisGoogle Scholar
  41. 41.
    Lin G, Keshari KR, Park JM (2017) Cancer metabolism and tumor heterogeneity: imaging perspectives using MR imaging and spectroscopy. Contrast Media Mol Imaging 2017:6053879PubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P (2011) Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 49(3-4):231–243CrossRefGoogle Scholar
  43. 43.
    Human Metabolome Database (HMDB). Accessed 20 May 2018
  44. 44.
    Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78(13):4281–4290CrossRefGoogle Scholar
  45. 45.
    Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikstrom C, Wold S (2006) Multi- and megavariate data analysis part I: basic principles and applications. Umetrics AB, UmeåGoogle Scholar
  46. 46.
    Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC (2006) Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78(13):4307–4318CrossRefGoogle Scholar
  47. 47.
    Chmurny GN, Hoult DI (1990) The ancient and honourable art of shimming. Concepts Magn Reson 2(3):131–149CrossRefGoogle Scholar
  48. 48.
    Takis PG, Schafer H, Spraul M, Luchinat C (2017) Deconvoluting interrelationships between concentrations and chemical shifts in urine provides a powerful analysis tool. Nat Commun 8(1):1662PubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23CrossRefGoogle Scholar
  50. 50.
    Cuperlovic-Culf M (2018) Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites 8(1):E4CrossRefGoogle Scholar
  51. 51.
    Smolinska A, Blanchet L, Buydens LM, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Beata Mickiewicz
    • 1
  • M. Eric Hyndman
    • 2
  • Hans J. Vogel
    • 1
    Email author
  1. 1.Department of Biological SciencesBio-NMR-Centre, University of CalgaryCalgaryCanada
  2. 2.Division of Urology, Department of SurgerySouthern Alberta Institute of Urology, University of CalgaryCalgaryCanada

Personalised recommendations