Advertisement

Gas Chromatography-Mass Spectrometry and Analysis of the Serum Metabolomic Profile Through Extraction and Derivatization of Polar Metabolites

  • Jodi Rattner
  • Farshad Farshidfar
  • Oliver F. BatheEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)

Abstract

Metabolite profiling in complex biological matrices such as serum requires high-throughput technologies capable of accurate and reproducible quantitative analysis and detection of slight differences in metabolite concentrations. Gas chromatography-mass spectrometry (GC-MS) is widely used for characterizing the metabolome. This chapter summarizes the necessary preparatory steps required to profile the metabolome using GC-MS. While this chapter focuses on evaluating polar metabolites in serum samples, the methods can be adapted to quantify nonpolar metabolites in other biological matrices.

Key words

Gas chromatography-mass spectrometry Serum Metabolite profiling Biomarker Cancer 

References

  1. 1.
    Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, Dietel M, Fiehn O (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66(22):10795–10804CrossRefPubMedGoogle Scholar
  2. 2.
    Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78CrossRefPubMedGoogle Scholar
  3. 3.
    He J, Luo Z, Huang L, He J, Chen Y, Rong X, Jia S, Tang F, Wang X, Zhang R, Zhang J, Shi J, Abliz Z (2015) Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates. Anal Chem 87(10):5372–5379.  https://doi.org/10.1021/acs.analchem.5b00680CrossRefGoogle Scholar
  4. 4.
    Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di Leo A (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25(19):2840–2846CrossRefGoogle Scholar
  5. 5.
    Di Lena M, Travaglio E, Altomare DF (2013) Metabolomics: a potential powerful ally in the fight against cancer. Color Dis 16(4):235–238.  https://doi.org/10.1111/codi.12523CrossRefGoogle Scholar
  6. 6.
    Farshidfar F, Weljie AM, Kopciuk K, Buie WD, Maclean A, Dixon E, Sutherland FR, Molckovsky A, Vogel HJ, Bathe OF (2012) Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med 4(5):42.  https://doi.org/10.1186/gm341CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Bayet-Robert M, Loiseau D, Rio P, Demidem A, Barthomeuf C, Stepien G, Morvan D (2010) Quantitative two-dimensional HRMAS 1H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy. Magn Reson Med 63(5):1172–1183.  https://doi.org/10.1002/mrm.22303CrossRefGoogle Scholar
  8. 8.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703CrossRefGoogle Scholar
  9. 9.
    Bertini I, Cacciatore S, Jensen BV, Schou JV, Johansen JS, Kruhoffer M, Luchinat C, Nielsen DL, Turano P (2012) Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res 72(1):356–364.  https://doi.org/10.1158/0008-5472.CAN-11-1543CrossRefGoogle Scholar
  10. 10.
    Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E (2003) Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128(1):32–36CrossRefGoogle Scholar
  11. 11.
    Lodi A, Ronen SM (2011) Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS One 6(10):e26155.  https://doi.org/10.1371/journal.pone.0026155CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130(5):701–707.  https://doi.org/10.1039/b501890kCrossRefPubMedGoogle Scholar
  13. 13.
    Nicholson JK, Lindon JC, Scarfe GB, Wilson ID, Abou-Shakra F, Sage AB, Castro-Perez J (2001) High-performance liquid chromatography linked to inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the simultaneous detection and identification of metabolites of 2-bromo-4-trifluoromethyl. Anal Chem 73(7):1491–1494CrossRefPubMedGoogle Scholar
  14. 14.
    Begley P, Francis-McIntyre S, Dunn WB, Broadhurst DI, Halsall A, Tseng A, Knowles J, Goodacre R, Kell DB (2009) Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal Chem 81(16):7038–7046.  https://doi.org/10.1021/ac9011599CrossRefPubMedGoogle Scholar
  15. 15.
    Dorman FL, Overton EB, Whiting JJ, Cochran JW, Gardea-Torresdey J (2008) Gas chromatography. Anal Chem 80(12):4487–4497CrossRefPubMedGoogle Scholar
  16. 16.
    Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51(3):635–640.  https://doi.org/10.1194/jlr.D001065CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Roberts LD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B 871(2):174–181.  https://doi.org/10.1016/j.jchromb.2008.04.002CrossRefGoogle Scholar
  18. 18.
    Quehenberger O, Armando AM, Dennis EA (2011) High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography–mass spectrometry. Biochimica Biophys Acta 1811(11):648–656.  https://doi.org/10.1016/j.bbalip.2011.07.006CrossRefGoogle Scholar
  19. 19.
    Lagerstedt SA, Hinrichs DR, Batt SM, Magera MJ, Rinaldo P, McConnell JP (2001) Quantitative determination of plasma C8–C26 Total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol Genet Metab 73(1):38–45.  https://doi.org/10.1006/mgme.2001.3170CrossRefGoogle Scholar
  20. 20.
    Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8(5):617–633CrossRefGoogle Scholar
  21. 21.
    Halama A, Riesen N, Moller G, Hrabe de Angelis M, Adamski J (2013) Identification of biomarkers for apoptosis in cancer cell lines using metabolomics: tools for individualized medicine. J Intern Med 274(5):425–439.  https://doi.org/10.1111/joim.12117CrossRefGoogle Scholar
  22. 22.
    Miolo G, Muraro E, Caruso D, Crivellari D, Ash A, Scalone S, Lombardi D, Rizzolio F, Giordano A, Corona G (2016) Pharmacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer. Oncotarget 7(26):39809–39822.  https://doi.org/10.18632/oncotarget.9489CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Jobard E, Blanc E, Negrier S, Escudier B, Gravis G, Chevreau C, Elena-Herrmann B, Tredan O (2015) A serum metabolomic fingerprint of bevacizumab and temsirolimus combination as first-line treatment of metastatic renal cell carcinoma. Br J Cancer 113(8):1148–1157.  https://doi.org/10.1038/bjc.2015.322CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Kell DB (2007) Metabolomic biomarkers: search, discovery and validation. Expert Rev Mol Diagn 7(4):329–333.  https://doi.org/10.1586/14737159.7.4.329CrossRefGoogle Scholar
  25. 25.
    Kiehntopf M, Nin N, Bauer M (2013) Metabolism, metabolome, and metabolomics in intensive care: is it time to move beyond monitoring of glucose and lactate? Am J Respir Crit Care Med 187(9):906–907.  https://doi.org/10.1164/rccm.201303-0414EDCrossRefGoogle Scholar
  26. 26.
    Napoli C, Sperandio N, Lawlor RT, Scarpa A, Molinari H, Assfalg M (2012) Urine metabolic signature of pancreatic ductal adenocarcinoma by (1)h nuclear magnetic resonance: identification, mapping, and evolution. J Proteome Res 11(2):1274–1283.  https://doi.org/10.1021/pr200960uCrossRefGoogle Scholar
  27. 27.
    Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 7(7):e40459.  https://doi.org/10.1371/journal.pone.0040459CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917.  https://doi.org/10.1139/o59-099CrossRefGoogle Scholar
  29. 29.
    Migne C, Durand S, Pujos-Guillot E (2018) Exploratory GC/MS-Based Metabolomics of Body Fluids. Clinical Metabolomics: 239–246Google Scholar
  30. 30.
    Lien SK, Kvitvang HF, Bruheim P (2012) Utilization of a deuterated derivatization agent to synthesize internal standards for gas chromatography-tandem mass spectrometry quantification of silylated metabolites. J Chromatogr A 1247:118–124.  https://doi.org/10.1016/j.chroma.2012.05.053CrossRefGoogle Scholar
  31. 31.
    Liu T, Zhang J, Wang X, Yang J, Tang Z, Lu J (2014) Radiolabeled glucose derivatives for tumor imaging using SPECT and PET. Curr Med Chem 21(1):24–34CrossRefGoogle Scholar
  32. 32.
    Hiller K, Hangebrauk J, Jager C, Spura J, Schreiber K, Schomburg D (2009) MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem 81(9):3429–3439.  https://doi.org/10.1021/ac802689cCrossRefGoogle Scholar
  33. 33.
    Hummel J, Selbig J, Walther D, Kopka J (2007) The Golm Metabolome Database: a database for GC-MS based metabolite profiling. In: Nielsen J, Jewett MC (eds) Metabolomics: a powerful tool in systems biology. Springer, Berlin, pp 75–95.  https://doi.org/10.1007/4735_2007_0229CrossRefGoogle Scholar
  34. 34.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714.  https://doi.org/10.1002/jms.1777CrossRefPubMedGoogle Scholar
  35. 35.
    Stein SE (1995) Chemical substructure identification by mass spectral library searching. J Am Soc Mass Spectrom 6(8):644–655.  https://doi.org/10.1016/1044-0305(95)00291-kCrossRefPubMedGoogle Scholar
  36. 36.
    Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78(13):4281–4290.  https://doi.org/10.1021/ac051632cCrossRefGoogle Scholar
  37. 37.
    Farshidfar F, Kopciuk KA, Hilsden R, McGregor SE, Mazurak VC, Buie WD, MacLean A, Vogel HJ, Bathe OF (2018) A quantitative multimodal metabolomic assay for colorectal cancer. BMC Cancer 18(1):26CrossRefPubMedGoogle Scholar
  38. 38.
    Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 28(6):882–883.  https://doi.org/10.1093/bioinformatics/bts034CrossRefGoogle Scholar
  39. 39.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57(1):289–300Google Scholar
  40. 40.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404.  https://doi.org/10.1158/2159-8290.CD-12-0095CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJ, van der Greef J, Timmerman ME (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics (Oxford, England) 21(13):3043–3048.  https://doi.org/10.1093/bioinformatics/bti476CrossRefGoogle Scholar
  42. 42.
    Gu H, Pan Z, Xi B, Asiago V, Musselman B, Raftery D (2011) Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer. Anal Chim Acta 686(1–2):57–63.  https://doi.org/10.1016/j.aca.2010.11.040CrossRefGoogle Scholar
  43. 43.
    Xia J, Wishart, DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst Nature Protocols 6(6), 743–760CrossRefGoogle Scholar
  44. 44.
    Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 15(29):1830–1831CrossRefPubMedGoogle Scholar
  45. 45.
    Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9(2):280–299.  https://doi.org/10.1007/s11306-012-0482-9CrossRefGoogle Scholar
  46. 46.
    Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760.  https://doi.org/10.1038/nprot.2011.319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jodi Rattner
    • 1
  • Farshad Farshidfar
    • 2
  • Oliver F. Bathe
    • 1
    • 3
    • 4
    Email author
  1. 1.Arnie Charbonneau Cancer InstituteUniversity of CalgaryCalgaryCanada
  2. 2.Department of Oncology and Arnie Charbonneau Cancer Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
  3. 3.Department of Surgery, Tom Baker Cancer CenterUniversity of CalgaryCalgaryCanada
  4. 4.Department of Oncology, Tom Baker Cancer CenterUniversity of CalgaryCalgaryCanada

Personalised recommendations