Advertisement

Serum-Free Organ Culture of the Embryonic Mouse Ureter

  • Filipa M. LopesEmail author
  • Adrian S. Woolf
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1926)

Abstract

The ability to explant and then maintain embryonic tissues in organ culture makes it feasible to study the growth and differentiation of whole organs, or parts or combinations of them, in three dimensions. Moreover, the possible effects of biochemical manipulations or mutations can be explored by visualizing a growing organ. The mammalian renal tract comprises the kidney, ureter, and urinary bladder, and the focus of this chapter is organ culture of the embryonic mouse ureter in serum-free defined medium. Over the culture period, rudiments grow in length, smooth muscle differentiates, and the ureters then undergo peristalsis in a proximal to distal direction.

Key words

Culture Embryo Mouse Peristalsis Ureter 

Notes

Acknowledgments

This work was supported by the RENALTRACT Initial Training Network that received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 642937.

References

  1. 1.
    Grobstein C (1953) Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118:52–55CrossRefGoogle Scholar
  2. 2.
    Trowell OA (1954) A modified technique for organ culture in vitro. Exp Cell Res 6:246–248CrossRefGoogle Scholar
  3. 3.
    Jainchill J, Saxen L, Vainio T (1964) Studies on kidney tubulogenesis. 1. The effect of actinomycin D on tubulogenesis in vitro. J Embryol Exp Morphol 12:597–607PubMedGoogle Scholar
  4. 4.
    Klein G, Langegger M, Timpl R, Ekblom P (1988) Role of laminin A chain in the development of epithelial cell polarity. Cell 55:331–341CrossRefGoogle Scholar
  5. 5.
    Chan SK, Riley PR, Price KL, McElduff F, Winyard PJ, Welham SJ, Woolf AS, Long DA (2010) Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog. Am J Physiol Renal Physiol 298:F346–F356CrossRefGoogle Scholar
  6. 6.
    Avner ED, Jaffe R, Temple T, Ellis D, Chung AE (1983) Development of renal basement membrane glycoproteins in metanephric organ culture. Lab Investig 48:263–268PubMedGoogle Scholar
  7. 7.
    Burgu B, McCarthy LS, Shah V, Long DA, Wilcox DT, Woolf AS (2006) Vascular endothelial growth factor stimulates embryonic urinary bladder development in organ culture. BJU Int 98:217–225CrossRefGoogle Scholar
  8. 8.
    Caubit X, Lye CM, Martin E, Coré N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135:3301–3310CrossRefGoogle Scholar
  9. 9.
    David SG, Cebrian C, Vaughan ED Jr, Herzlinger D (2005) c-Kit and ureteral peristalsis. J Urol 173:292–295CrossRefGoogle Scholar
  10. 10.
    Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121:1199–1206CrossRefGoogle Scholar
  11. 11.
    Hurtado R, Bub G, Herzlinger D (2014) A molecular signature of tissues with pacemaker activity in the heart and upper urinary tract involves coexpressed hyperpolarization-activated cation and T-type Ca2+ channels. FASEB J 28:730–739CrossRefGoogle Scholar
  12. 12.
    Woolf AS, Davies JA (2013) Cell biology of ureter development. J Am Soc Nephrol 24:19–25CrossRefGoogle Scholar
  13. 13.
    Bohnenpoll T, Wittern AB, Mamo TM, Weiss AC, Rudat C, Kleppa MJ, Schuster-Gossler K, Wojahn I, Lüdtke TH, Trowe MO, Kispert A (2017) A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet 13:e1006951CrossRefGoogle Scholar
  14. 14.
    Pitera JE, Woolf AS, Basson AM, Scambler PJ (2012) Sprouty1 haploinsufficiency prevents renal agenesis in a model of Fraser syndrome. J Am Soc Nephrol 23:1790–1796CrossRefGoogle Scholar
  15. 15.
    Kerecuk L, Schreuder MF, Woolf AS (2008) Renal tract malformations: perspectives for nephrologists. Nat Clin Pract Nephrol 4:312–325CrossRefGoogle Scholar
  16. 16.
    Caubit X, Gubellini P, Andrieux J, Roubertoux P, Metwaly M, Jacq B, Fatmi A, Had-Aissoini L, Kwan K, Salin P, Carlier M, Liedén A, Rudd E, Shinawi M, Vincent-Delorme C, Cuisset J-M, Lemaitre M-P, Abderrehamane F, Duban B, Lemaitre J-F, Woolf AS, Bockenhauer D, Severac D, Dubois E, Zhu Y, Šestan N, Garratt AN, Kerkerian-Le Goff L, Fasano L (2016) TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat Genet 48:1359–1369CrossRefGoogle Scholar
  17. 17.
    Cuvertino S, Stuart HM, Chandler KE, Roberts NA, Armstrong R, Bernardini L, Bhaskar S, Callewaert B, Clayton-Smith J, Hernando-Davalillo C, Deshpande C, Devriendt K, Digilio MC, Dixit A, Edwards M, Friedman JM, Gonzalez-Meneses A, Joss S, Kerr B, Lampe AK, Langlois SL, Loget P, McGowan R, De Smedt M, O’Sullivan J, Odent S, Parker MJ, Pebrel-Richard C, Petit F, Stark Z, Tinschert S, Vasudevan P, Villa O, White SM, Zahir FR, Lennon R, The DDD Study, Woolf AS, Banka S (2017) ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am J Hum Genet 101:1021–1033CrossRefGoogle Scholar
  18. 18.
    Coletta R, Roberts NA, Oltrabella F, Khalil BA, Morabito A, Woolf AS (2016) Bridging the gap: functional healing of embryonic small intestine ex vivo. J Tissue Eng Regen Med 10:178–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterManchesterUK
  2. 2.Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK

Personalised recommendations