Time-Lapse Technologies and 4D Imaging of Kidney Development

  • Ulla SaarelaEmail author
  • Ilya SkovorodkinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1926)


Time-lapse imaging is a technique of frequent imaging and following a course of a process. Because the development of the embryonic kidney can proceed ex vivo after dissection, it is possible to study the morphogenesis by culturing the kidney in the onstage incubator of a microscope and follow the developmental process by imaging. Confocal microscopes and other three-dimensional imaging systems offer the possibility for tracking the development process in four dimensions—3D and the time.

Key words

Time-lapse imaging Kidney development Tissue culture 



This work was supported financially by the Suomen Akatemia (Academy of Finland) (206038, 121647, 250900, 260056; Centre of Excellence grant 2012-2017 251314), Munuaissäätiö—Finnish Kidney and Liver Association, the Sigrid Juséliuksen Säätiö, Novo Nordisk, Syöpäjärjestöt (Cancer Society of Finland), the European Community’s Seventh Framework Programme (FP7/2007-2013; grant FP7-HEALTH-F5-2012-INNOVATION-1 EURenOmics 305608), and H2020 Marie Skłodowska-Curie Actions Innovative Training Network “RENALTRACT” Project ID 642937.


  1. 1.
    Saxen L, Wartiovaara J (1966) Cell contact and cell adhesion during tissue organization. Int J Cancer 1(3):271–290CrossRefGoogle Scholar
  2. 2.
    Saxén L, Toivonen S, Vainio T, Korhonen P (1965) Untersuchungen über die tubulogenese der niere. Zeitschrift Für Naturforschung B 20:4. Scholar
  3. 3.
    Saxén L (1987) Organogenesis of the kidney, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Costantini F, Watanabe T, Lu B, Chi X, Srinivas S (2011) Imaging kidney development. Cold Spring Harb Protoc 2011(5):pdb.top109. Scholar
  5. 5.
    Lindstrom NO, Chang CH, Valerius MT, Hohenstein P, Davies JA (2015) Node retraction during patterning of the urinary collecting duct system. J Anat 226(1):13–21. Scholar
  6. 6.
    Combes AN, Lefevre JG, Wilson S, Hamilton NA, Little MH (2016) Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Dev Biol 418(2):297–306. Scholar
  7. 7.
    Lefevre JG, Chiu HS, Combes AN, Vanslambrouck JM, Ju A, Hamilton NA, Little MH (2017) Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells. Development 144(6):1087–1096. Scholar
  8. 8.
    Saarela U, Akram SU, Desgrange A, Rak-Raszewska A, Shan J, Cereghini S et al (2017) Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development 144(6):1113–1117. Scholar
  9. 9.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. Scholar
  10. 10.
    Prunskaite-Hyyrylainen R, Skovorodkin I, Xu Q, Miinalainen I, Shan J, Vainio SJ (2016) Wnt4 coordinates directional cell migration and extension of the mullerian duct essential for ontogenesis of the female reproductive tract. Hum Mol Genet 25(6):1059–1073. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
  2. 2.Laboratory of Developmental Biology, Biocenter OuluInfoTechOuluFinland
  3. 3.Oulu Center for Cell Matrix ResearchOuluFinland

Personalised recommendations