Ex Vivo Measurements of Ca2+ Transients in Intracellular Compartments of Skeletal Muscle Fibers by Means of Genetically Encoded Probes

  • Gaia Gherardi
  • Cristina MammucariEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)


We report a method for ex vivo measurements of Ca2+ transients in skeletal muscle fibers, both in the sarcoplasma and into the mitochondria. These measurements are based on the use of genetically encoded probes. Addition of targeting DNA sequences, in frame with the probe encoding sequence, ensures protein expression in specific compartments. The use of probes with different excitation spectra allows the simultaneous determination of cytosolic and mitochondrial Ca2+ transients in the same fiber. Probe encoding plasmids are expressed in flexor digitorum brevis (FDB) muscles by means of the in vivo electroporation technique. Measurements are then performed ex vivo in isolated single myofibers.

Key words

Skeletal muscle fibers Ca2+ measurements Cytosol Mitochondria Genetically encoded probes 



Research is supported by fundings from the Italian Ministry of Education, University, and Research (PRIN 2015W2N883_003) and the French Muscular Dystrophy Association AFM-Téléthon (18857).


  1. 1.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. CrossRefPubMedGoogle Scholar
  2. 2.
    Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290. CrossRefPubMedGoogle Scholar
  4. 4.
    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747CrossRefGoogle Scholar
  5. 5.
    Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20:1058–1067. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eisner V, Csordas G, Hajnoczky G (2013) Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle—pivotal roles in Ca2+ and reactive oxygen species signaling. J Cell Sci 126:2965–2978. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rossi a E, Boncompagni S, Wei L, Protasi F, Dirksen RT (2011) Differential impact of mitochondrial positioning on mitochondrial Ca2+ uptake and Ca2+ spark suppression in skeletal muscle. AJP Cell Physiol 301:C1128–C1139. CrossRefGoogle Scholar
  8. 8.
    Brini M, De Giorgi F, Murgia M, Marsault R, Massimino ML, Cantini M, Rizzuto R, Pozzan T (1997) Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 8:129–143CrossRefGoogle Scholar
  9. 9.
    Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brûlet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rudolf R (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mammucari C, Gherardi G, Lanfranchi G, Rizzuto R, Zamparo I, Raffaello A, Boncompagni S, Chemello F, Cagnin S, Braga A, Zanin S, Pallafacchina G, Zentilin L, Sandri M, De Stefani D, Protasi F, Lanfranchi G, Rizzuto R (2015) The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 10:1269–1279. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mammucari C, Raffaello A, Vecellio Reane D, Rizzuto R (2016) Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochim Biophys Acta 1863:2457–2464. CrossRefPubMedGoogle Scholar
  15. 15.
    Vecellio Reane D, Vallese F, Checchetto V, Acquasaliente L, Butera G, De Filippis V, Szabò I, Zanotti G, Rizzuto R, Raffaello A (2016) A MICU1 splice variant confers high sensitivity to the mitochondrial Ca2+ uptake machinery of skeletal muscle. Mol Cell 64:760–773. CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An Expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tosatto A, Sommaggio R, Kummerow C, Bentham RB, Blacker TS, Berecz T, Duchen MR, Rosato A, Bogeski I, Szabadkai G, Rizzuto R, Mammucari C (2016) The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol Med 8:569–585. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations