Methods to Measure Intracellular Ca2+ Concentration Using Ca2+-Sensitive Dyes

  • Sofia Zanin
  • Elisa Lidron
  • Rosario Rizzuto
  • Giorgia PallafacchinaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)


Ca2+ ion is universally considered the most versatile second messenger responsible for decoding and regulating the majority of the signaling pathways within the cell. The study of intracellular Ca2+ concentration ([Ca2+]i) dynamics is consequently of primary importance for the interpretation of cellular biology. This chapter will present a relatively simple, largely diffused, and nevertheless robust method to measure variations of [Ca2+]i by the use of the Ca2+-sensitive chemical dye Fura-2. A general protocol for the assessment of [Ca2+]i in adherent cells, applicable to a variety of cell systems, will be first presented. Then, the implementation of Fura-2 to detect [Ca2+]i in two specific cell types, namely, human adrenocortical cells and primary skin fibroblasts, will be discussed in more particulars. Finally, the procedure to monitor Ca2+ influx through the plasma membrane using Fura-2 will be described.

Key words

Intracellular calcium measurements Fura-2 Ratiometric calcium indicator Adherent cells 


  1. 1.
    Ringer S (1883) A third contribution regarding the influence of the inorganic constituents of the blood on the ventricular contraction. J Physiol 4:222–225CrossRefGoogle Scholar
  2. 2.
    Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325. CrossRefPubMedGoogle Scholar
  3. 3.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRefGoogle Scholar
  4. 4.
    Clapham DE (2007) Calcium Signaling. Cell 131:1047–1058CrossRefGoogle Scholar
  5. 5.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578CrossRefGoogle Scholar
  6. 6.
    Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the Center of Cell Signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049CrossRefGoogle Scholar
  7. 7.
    Burgoyne T, Patel S, Eden ER (2015) Calcium signaling at ER membrane contact sites. Biochim Biophys Acta 1853:2012–2017CrossRefGoogle Scholar
  8. 8.
    Bootman MD, Petersen OH, Verkhratsky A (2002) The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium 32:231–234CrossRefGoogle Scholar
  9. 9.
    Santulli G, Nakashima R, Yuan Q, Marks AR (2017) Intracellular calcium release channels: an update. J Physiol 595:3041–3051CrossRefGoogle Scholar
  10. 10.
    Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta Bioenerg 1787:1342–1351CrossRefGoogle Scholar
  11. 11.
    Putney JWJ (1977) Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol 268:139–149CrossRefGoogle Scholar
  12. 12.
    Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321CrossRefGoogle Scholar
  13. 13.
    Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205CrossRefGoogle Scholar
  14. 14.
    Putney JW, St Bird GJ (1993) The signal for Capacitative calcium entry Minireview biphasic nature of calcium Signaling. Cell 75:199–201CrossRefGoogle Scholar
  15. 15.
    Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349CrossRefGoogle Scholar
  16. 16.
    Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436CrossRefGoogle Scholar
  17. 17.
    Stathopulos PB, Ikura M (2017) Store operated calcium entry: from concept to structural mechanisms. Cell Calcium 63:3–7CrossRefGoogle Scholar
  18. 18.
    Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+](c)). A critical evaluation. J Biol Chem 270(17):9896–9903CrossRefGoogle Scholar
  19. 19.
    Granatiero V, Patron M, Tosatto A, Merli G, Rizzuto R (2014) The use of aequorin and its variants for Ca2+ measurements. Cold Spring Harb Protoc 2014:9–16PubMedGoogle Scholar
  20. 20.
    Tosatto A, Rizzuto R, Mammucari C Ca2+ Measurements in Mammalian cells with Aequorin-based probesGoogle Scholar
  21. 21.
    Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586CrossRefGoogle Scholar
  22. 22.
    Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065CrossRefGoogle Scholar
  23. 23.
    Pérez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: properties and evaluation. Biochim Biophys Acta 1833:1787–1797CrossRefGoogle Scholar
  24. 24.
    Hove-Madsen L, Baudet S, Bers DM (2010) Making and using calcium-selective mini- and microelectrodes. Methods Cell Biol 99:67–89CrossRefGoogle Scholar
  25. 25.
    Bruton JD, Cheng AJ, Westerblad H (2012) Methods to detect Ca2+ in living cells. In: Advances in experimental medicine and biology, pp 27–43Google Scholar
  26. 26.
    Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404CrossRefGoogle Scholar
  27. 27.
    Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334CrossRefGoogle Scholar
  28. 28.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450Google Scholar
  29. 29.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A In vivo two-photon calcium imaging of neuronal networksGoogle Scholar
  30. 30.
    Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation (optical recording/fura-2/dendritic integration/motion detection). Neurobiology 89:4139–4143Google Scholar
  31. 31.
    Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826CrossRefGoogle Scholar
  32. 32.
    Bootman MD, Rietdorf K, Collins T, Walker S, Sanderson M (2013) Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb Protoc 8:83–99Google Scholar
  33. 33.
    Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151CrossRefGoogle Scholar
  34. 34.
    Parmar J, Key RE, Rainey WE (2008) Development of an adrenocorticotropin-responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab 93:4542–4546CrossRefGoogle Scholar
  35. 35.
    Wang T, Rainey WE (2012) Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol 351:58–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sofia Zanin
    • 1
  • Elisa Lidron
    • 2
  • Rosario Rizzuto
    • 2
  • Giorgia Pallafacchina
    • 2
    • 3
    Email author
  1. 1.Department of MedicineUniversity of PaduaPaduaItaly
  2. 2.Department of Biomedical SciencesUniversity of PaduaPaduaItaly
  3. 3.Neuroscience Institute, Italian National Research Council (CNR)PaduaItaly

Personalised recommendations