Assessing Calcium-Stimulated Mitochondrial Bioenergetics Using the Seahorse XF96 Analyzer

  • Jennifer Wettmarshausen
  • Fabiana PerocchiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)


The development of fluorescence-based oxygen sensors coupled with microplate-based assays for quantitative bioenergetics analyses enables screening multiple experimental conditions at once with small biological material and in a timely manner. In this chapter, we outline detailed protocols and practical tips to design and perform controlled measurements of (a) respiratory and glycolytic metabolism of intact cells, (b) substrate-dependent respiration in permeabilized cells and isolated mitochondria, and (c) calcium-dependent regulation of mitochondrial bioenergetics with Seahorse XF Flux Analyzers.

Key words

Mitochondria Bioenergetics Respiration Oxygen consumption Intact cells Permeabilized cells Seahorse XF analyzer Calcium 



We thank Dr. Daniela Arduino and Valerie Goh for critical reading of the manuscript. This work was supported by the German Research Foundation (DFG) under the Emmy Noether Programme (PE 2053/1-1) and the Bert L & N Kuggie Vallee Foundation (to F.P. and J.W.).


  1. 1.
    Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354CrossRefGoogle Scholar
  2. 2.
    Denton RM, McCormack JG, Edgell NJ (1980) Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+−stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J 190:107–117CrossRefGoogle Scholar
  3. 3.
    McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425CrossRefGoogle Scholar
  4. 4.
    Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EAA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11:1798–1816CrossRefGoogle Scholar
  5. 5.
    Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A, Ferrick DA, Wheeler MB, Shirihai OS (2012) A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One 7:e33023CrossRefGoogle Scholar
  6. 6.
    Schuh RA, Jackson KC, Khairallah RJ, Ward CW, Spangenburg EE (2012) Measuring mitochondrial respiration in intact single muscle fibers. Am J Physiol Regul Integr Comp Physiol 302:R712–R719CrossRefGoogle Scholar
  7. 7.
    Schuh RA, Clerc P, Hwang H, Mehrabian Z, Bittman K, Chen H, Polster BM (2011) Adaptation of microplate-based respirometry for hippocampal slices and analysis of respiratory capacity. J Neurosci Res 89:1979–1988CrossRefGoogle Scholar
  8. 8.
    Wettmarshausen J, Perocchi F (2017) Isolation of functional mitochondria from cultured cells and mouse tissues. Methods Mol Biol 1567:15–32CrossRefGoogle Scholar
  9. 9.
    Salabei JK, Gibb AA, Hill BG (2014) Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 9:421–438CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD)NeuherbergGermany
  2. 2.Department of BiochemistryGene Center Munich, Ludwig-Maximilians Universität MünchenMunichGermany

Personalised recommendations