Advertisement

Calcium Imaging of Store-Operated Calcium (Ca2+) Entry (SOCE) in HEK293 Cells Using Fura-2

  • Martin JohnsonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)

Abstract

The store-operated calcium (Ca2+) entry (SOCE) pathway is an essential Ca2+ signaling pathway in non-excitable cells that serve many physiological functions. SOCE is mediated through the plasma membrane (PM) protein, Orai1, and the endoplasmic reticulum protein, stromal interaction molecule 1 (STIM1). One of the most well-established methods to study SOCE is using the Ca2+-sensing dye, fura-2. Here we describe a detailed protocol on how to use fura-2 to study Ca2+ signaling from SOCE in human embryonic kidney (HEK) cells.

Key words

Calcium imaging Fura-2 AM Store-operated calcium entry Orai1 STIM1 Thapsigargin 

Notes

Acknowledgments

I would like to thank Mohamed Trebak, Ryan Yoast, and Scott Emrich for critical reading of this manuscript. Research in the author’s laboratory is supported by grants from the NIH.

References

  1. 1.
    Hou X, Pedi L, Diver MM et al (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313CrossRefGoogle Scholar
  2. 2.
    Mercer JC, DeHaven WI, Smyth JT et al (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990CrossRefGoogle Scholar
  3. 3.
    Kar P, Bakowski D, Di CJ et al (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci 109:6969–6974CrossRefGoogle Scholar
  4. 4.
    Putney JW, Tomita T (2011) Phospholipase C signaling and calcium influx. Adv Biol Regul 52:152–164CrossRefGoogle Scholar
  5. 5.
    Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 1356:45–79CrossRefGoogle Scholar
  6. 6.
    Abdullaev IF, Bisaillon JM, Potier M et al (2008) Stim1 and orai1 mediate crac currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299CrossRefGoogle Scholar
  7. 7.
    Spinelli AM, González-Cobos JC, Zhang X et al (2012) Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC currents, proliferation, and migration. Pflugers Arch 464:481–492CrossRefGoogle Scholar
  8. 8.
    Potier M, Gonzalez JC, Motiani RK et al (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23:2425–2437CrossRefGoogle Scholar
  9. 9.
    Motiani RK, Zhang X, Harmon KE et al (2013) Orai3 is an estrogen receptor ??-regulated Ca2+ channel that promotes tumorigenesis. FASEB J 27:63–75CrossRefGoogle Scholar
  10. 10.
    Takemura H, Hughes AR, Thastrup O et al (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271PubMedGoogle Scholar
  11. 11.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450 http://www.jbc.org/content/260/6/3440.full.pdf PubMedGoogle Scholar
  12. 12.
    Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738CrossRefGoogle Scholar
  13. 13.
    Vaeth M, Yang J, Yamashita M et al (2017) ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 8:14714CrossRefGoogle Scholar
  14. 14.
    Hyrc KL, Bownik JM, Goldberg MP (2000) Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC. Cell Calcium 27:75–86CrossRefGoogle Scholar
  15. 15.
    Jaiswal M, Zech WD, Goos M et al (2009) Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motor neuron disease. BMC Neurosci 10:64CrossRefGoogle Scholar
  16. 16.
    Suzuki J, Kanemaru K, Ishii K et al (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153CrossRefGoogle Scholar
  17. 17.
    Dynes JL, Amcheslavsky A, Cahalan MD (2016) Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx. Proc Natl Acad Sci 113:440–445CrossRefGoogle Scholar
  18. 18.
    Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200CrossRefGoogle Scholar
  19. 19.
    Prakriya M, Feske S, Gwack Y et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233CrossRefGoogle Scholar
  20. 20.
    Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436CrossRefGoogle Scholar
  21. 21.
    Trebak M, Bird GSJ, McKay RR et al (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623CrossRefGoogle Scholar
  22. 22.
    Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536:3–19CrossRefGoogle Scholar
  23. 23.
    Smyth JT, DeHaven WI, Bird GS et al (2008) Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci 121:762–772CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cellular and Molecular PhysiologyThe Pennsylvania State University College of MedicineHersheyUSA

Personalised recommendations