High-Throughput Screening Using Photoluminescence Probe to Measure Intracellular Calcium Levels

  • Simona Feno
  • Giulia Di Marco
  • Agnese De Mario
  • Halenya Monticelli
  • Denis Vecellio ReaneEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)


Aequorin, a 22 kDa protein produced by the jellyfish Aequorea victoria, was the first probe used to measure Ca2+ concentrations ([Ca2+]) of specific intracellular organelles in intact cells. After the binding of Ca2+ to three high-affinity binding sites, an irreversible reaction occurs leading to the emission of photons that is proportional to [Ca2+]. While native aequorin is suitable for measuring cytosolic [Ca2+] after cell stimulation in a range from 0.5 to 10 μM, it cannot be used in organelles where [Ca2+] is much higher, such as in the lumen of endoplasmic/sarcoplasmic reticulum (ER/SR) and mitochondria. However, some modifications made on aequorin itself or on coelenterazine, its lipophilic prosthetic luminophore, and the addition of targeting sequences or the fusion with resident proteins allowed the specific organelle localization and the measurements of intra-organelle Ca2+ levels. In the last years, the development of multiwell plate readers has opened the possibility to perform aequorin-based high-throughput screenings and has overcome some limitation of the standard method. Here we present the procedure for expressing, targeting, and reconstituting aequorin in intact cells and for measuring Ca2+ in the bulk cytosol, mitochondria, and ER by a high-throughput screening system.

Key words

Calcium probes Aequorin Calcium Cytosol Mitochondria ER High-throughput screening 



We thank Anna Raffaello for the critical reading of the manuscript. This work was supported by the Italian Telethon Foundation (GGP16026) and the French Muscular Dystrophy Association (AFM-Téléthon) (19471).


  1. 1.
    Shimomura O, Johnson FH (1973) Chemical nature of the light emitter in bioluminescence of aequorin. Tetrahedron Lett 14:2963–2966. CrossRefGoogle Scholar
  2. 2.
    Charbonneau H, Walsh KA, McCann RO, Prendergast FG, Cormier MJ, Vanaman TC (1985) Amino acid sequence of the calcium-dependent photoprotein aequorin. Biochemistry 24:6762–6771CrossRefGoogle Scholar
  3. 3.
    Head JF, Inouye S, Teranishi K, Shimomura O (2000) The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature 405:372–376CrossRefGoogle Scholar
  4. 4.
    Shimomura O, Johnson FH (1975) Regeneration of the photoprotein aequorin. Nature 256:236–238CrossRefGoogle Scholar
  5. 5.
    Granatiero V, Patron M, Tosatto A, Merli G, Rizzuto R (2014) The use of aequorin and its variants for Ca2+ measurements. Cold Spring Harb Protoc 2014:9–16PubMedGoogle Scholar
  6. 6.
    Brini M (2008) Calcium-sensitive photoproteins. Methods 46:160–166CrossRefGoogle Scholar
  7. 7.
    Bianchi K, Rimessi A, Prandini A, Szabadkai G, Rizzuto R (2004) Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta Mol Cell Res 1742:119–131CrossRefGoogle Scholar
  8. 8.
    Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14:5467–5475CrossRefGoogle Scholar
  9. 9.
    Kendall JM, Sala-Newby G, Ghalaut V, Dormer RL, Cambell AK (1992) Engineering the Ca2+−activated photoprotein aequorin with reduced affinity for calcium. Biochem Biophys Res Commun 187:1091–1097CrossRefGoogle Scholar
  10. 10.
    De la Fuente S, Fonteriz RI, de la Cruz PJ, Montero M, Alvarez J (2012) Mitochondrial free [Ca(2+)] dynamics measured with a novel low-Ca(2+) affinity aequorin probe. Biochem J 445:371–376Google Scholar
  11. 11.
    Bonora M, Giorgi C, Bononi A, Marchi S, Patergnani S, Rimessi A, Rizzuto R, Pinton P (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8(11):2105CrossRefGoogle Scholar
  12. 12.
    Shimomura O, Musicki B, Kishi Y, Inouye S (1993) Light-emitting properties of recombinant semisynthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14:373–378CrossRefGoogle Scholar
  13. 13.
    Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+](c)). A critical evaluation. J Biol Chem 270(17):9896–9903CrossRefGoogle Scholar
  14. 14.
    Brini M, Murgia M, Pasti L, Picard D, Pozzan T, Rizzuto R (1993) Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J 12:4813–4819CrossRefGoogle Scholar
  15. 15.
    Brini M, Marsault R, Bastianutto C, Pozzan T, Rizzuto R (1994) Nuclear targeting of aequorin. A new approach for measuring nuclear Ca2+ concentration in intact cells. Cell Calcium 16:259–268CrossRefGoogle Scholar
  16. 16.
    Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14:5467CrossRefGoogle Scholar
  17. 17.
    Rizzuto R, Simpson AWM, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327CrossRefGoogle Scholar
  18. 18.
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766CrossRefGoogle Scholar
  19. 19.
    Fliegel L, Newton E, Burns K, Michalak M (1990) Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:15496–15502PubMedGoogle Scholar
  20. 20.
    Sitia R, Meldolesi J (1992) Endoplasmic reticulum: a dynamic patchwork of specialized subregions. Mol Biol Cell 3:1067–1072CrossRefGoogle Scholar
  21. 21.
    Brini M, De Giorgi F, Murgia M, Marsault R, Massimino ML, Cantini M, Rizzuto R, Pozzant T (1997) Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 8:129–143CrossRefGoogle Scholar
  22. 22.
    Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298CrossRefGoogle Scholar
  23. 23.
    Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41CrossRefGoogle Scholar
  24. 24.
    Lasorsa FM, Pinton P, Palmieri L, Scarcia P, Rottensteiner H, Rizzuto R, Palmieri F (2008) Peroxisomes as novel players in cell calcium homeostasis. J Biol Chem 283:15300–15308CrossRefGoogle Scholar
  25. 25.
    Robert V, Pinton P, Tosello V, Rizzuto R, Pozzan T (2000) Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Methods Enzymol 327:440–456CrossRefGoogle Scholar
  26. 26.
    Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R (2001) Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J 355:1–12CrossRefGoogle Scholar
  27. 27.
    Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). J Biol Chem 270:9896–9903CrossRefGoogle Scholar
  28. 28.
    Ottolini D, Calì T, Brini M (2014) Methods to measure intracellular Ca2+ fluxes with organelle-targeted aequorin-based probes. Methods Enzymol 543:21–45CrossRefGoogle Scholar
  29. 29.
    Ottolini D, Calì T, Brini M (2013) Measurements of Ca2+ concentration with recombinant targeted luminescent probes. In: Methods in molecular biology. Humana Press, Clifton, NJ, pp 273–291Google Scholar
  30. 30.
    Allen DG, Blinks JR (1978) Calcium transients in aequorin-injected frog cardiac muscle. Nature 273:509–513CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Simona Feno
    • 1
  • Giulia Di Marco
    • 1
  • Agnese De Mario
    • 1
  • Halenya Monticelli
    • 2
  • Denis Vecellio Reane
    • 1
    Email author
  1. 1.Department of Biomedical SciencesUniversity of PaduaPaduaItaly
  2. 2.Department of Surgery, Oncology and GastroenterologyUniversity of PaduaPaduaItaly

Personalised recommendations