Advertisement

Phototropism pp 121-130 | Cite as

A Simple Procedure to Observe Phototropic Responses in the Red Seaweed Pyropia yezoensis

  • Megumu Takahashi
  • Koji MikamiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1924)

Abstract

The marine red seaweed Pyropia yezoensis exhibits phototropic responses in gametophyte and conchosporangia phases, but not in sporophytes. These responses are easily monitored with a simple culturing box that has one side open to allow for unilateral light irradiation within an incubator. Confirmation of phototropic responses is achieved by changing the direction of unilateral light irradiation via rotation of the culture dishes clockwise 90°.

Key words

Conchosporangium Gametophyte Phototropism Pyropia yezoensis Red seaweed Sporophyte 

Notes

Acknowledgments

We are grateful to the Marine Resources Research Center, Aichi Fisheries Research Institute for kindly providing P. yezoensis strain U-51. This work was supported in part by KAKENHI (15H04539).

References

  1. 1.
    Goyal A, Szarzynska B, Fankhauser C (2013) Phototropism: at the crossroads of light-signaling pathways. Trends Plant Sci 18:393–401CrossRefGoogle Scholar
  2. 2.
    Fankhauser C, Christie JM (2015) Plant phototropic growth. Curr Biol 25:R384–R389CrossRefGoogle Scholar
  3. 3.
    Hohm T, Preuten T, Fankhauser C (2013) Phototropism: translating light into directional growth. Am J Bot 100:47–59CrossRefGoogle Scholar
  4. 4.
    Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26:38–55CrossRefGoogle Scholar
  5. 5.
    Buggeln RG (1974) Negative phototropism of the chapter of Alaria esculenta (Laminariales). J Phycol 10:80–82Google Scholar
  6. 6.
    Kataoka H (1975) Phototropism in Vaucheria germinate I. The action spectrum. Plant Cell Physiol 16:427–437Google Scholar
  7. 7.
    Kataoka H (1975) Phototropism in Vaucheria germinate II. The mechanism of bending and branching. Plant Cell Physiol 16:439–448Google Scholar
  8. 8.
    Waaland SD, Nehlsen W, Waaland JR (1977) Phototropism in red alga, Griffithsia pacifica. Plant Cell Physiol 18:603–612Google Scholar
  9. 9.
    Ishizawa K, Wada S (1979) Growth and phototropic bending in Boergesenia rhizoid. Plant Cell Physiol 20:973–982Google Scholar
  10. 10.
    Ishizawa K, Wada S (1979) Action spectrum of negative phototropism in Boergesenia forbesii. Plant Cell Physiol 20:983–987Google Scholar
  11. 11.
    Rico JM, Guiry MD (1996) Phototropism in seaweeds: a review. Sci Mar 60:273–281Google Scholar
  12. 12.
    Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M, Kiyosue T, Kikuyama M, Wada M, Kataoka H (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A 104:19625–19630CrossRefGoogle Scholar
  13. 13.
    Takahashi F (2016) Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. J Plant Res 129:189–197CrossRefGoogle Scholar
  14. 14.
    Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem service. Algae 32:1–13CrossRefGoogle Scholar
  15. 15.
    Mikami K, Li L, Takahashi M (2012) Monospore-based asexual life cycle in Porphyra yezoensis. In: Mikami K (ed) Porphyra yezoensis: Frontiers in physiological and molecular biological research. Nova Science, New York, pp 15–37Google Scholar
  16. 16.
    Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8:e57122. https://doi.org/10.1371/journal.pone.0057122CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang L, Mao Y, Kong F, Li G, Ma F, Zhang B, Sun P, Bi G, Zhang F, Xue H, Cao M (2013) Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS One 8:e65902. https://doi.org/10.1371/journal.pone.0065902CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kong F, Sun P, Cao M, Wang L, Mao Y (2014) Complete mitochondrial genome of Pyropia yezoensis: reasserting the revision of genus Porphyra. Mitochondrial DNA 25:335–336CrossRefGoogle Scholar
  19. 19.
    Van Tussenbrock BI (1984) Effect of continuous unilateral irradiation on the conchocelis of Porphyra umbilicalis (L.) J. Ag. and some other red algae. J Exp Mar Biol Ecol 83:263–274CrossRefGoogle Scholar
  20. 20.
    Migita S, Kim CP (1970) Studies on horizontal growth of Conchocelis. Bull Fac Fish Nagasaki Univ 30:1–8 in Japanese with English abstractGoogle Scholar
  21. 21.
    Takahashi M, Mikami K (2016) Phototropism in the marine red macroalgae Pyropia yezoensis. Am J Plant Sci 7:2412–2428CrossRefGoogle Scholar
  22. 22.
    Li L, Saga N, Mikami K (2008) Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis. J Exp Bot 59:3575–3586CrossRefGoogle Scholar
  23. 23.
    Li L, Saga N, Mikami K (2009) Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis. J Exp Bot 60:3477–3489CrossRefGoogle Scholar
  24. 24.
    Takahashi M, Saga N, Mikami K (2010) Photosynthesis-dependent extracellular Ca2+ influx triggers an asexual reproductive cycle in the marine red macroalgae Porphyra yezoensis. Am J Plant Sci 1:1–11CrossRefGoogle Scholar
  25. 25.
    Adams E, Mikami K, Shin R (2017) Selection and functional analysis of a Pyropia yezoensis ammonium transporter PyAMT1 in potassium deficiency. J Appl Phycol 29:2617–2626CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Bio-IndustryTokyo University of AgricultureAbashiriJapan
  2. 2.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  3. 3.College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina

Personalised recommendations