Phototropism pp 83-120 | Cite as

Quantitative Analysis of Tip Growth, Phototropic Responses, and Other Blue Light-Dependent Photoresponses of Vaucheria

  • Hironao Kataoka
Part of the Methods in Molecular Biology book series (MIMB, volume 1924)


The coenocytic tip-growing alga Vaucheria exhibits positive and negative phototropism, apical expansion, polarotropism, and branch induction from the illuminated region of the cell, all of which are caused by blue light. The bending response of Vaucheria is a blue light-mediated growth response. Differently from diffuse-growing cells or organs, the apical hemispherical dome of the Vaucheria cell is the site of not only maximum growth activity but also the site of blue light perception. Thence the phototropic response is initiated by the bulging mechanism: that is, a quick shift of the growth center to the adjacent subapical flank region. Since tip growth is driven by localized exocytosis, both phototropic bending and branch induction are considered to be closely related blue light-responses. Here I describe first how to prepare a highly useful culture medium for most freshwater algae, to establish unialgal and axenic culture of Vaucheria, and then describe several simple illumination systems using ordinary and/or inverted microscopes for the measurements of tip growth and for analyses of phototropism, polarotropism, and blue light-induced branching. Brief information is also included concerning the nature and function of aureochrome, the newly discovered, ochrophyte-specific blue light receptor. Aureochrome mediates blue light-induced branching, but its role in the phototropic response is still not elucidated.

Key words

Apical expansion Aureochrome Blue light Branching Ca2+ ion Coenocyte Light-growth response Negative phototropism Polarotropism Positive phototropism Split-field illumination method Unilateral illumination method Vaucheria 


  1. 1.
    Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57:79–92CrossRefGoogle Scholar
  2. 2.
    Cai G, Parotta L, Cresti M (2015) Organelle trafficking, the cytoskeleton, and pollen tube growth. J Integr Plant Biol 57:63–78CrossRefGoogle Scholar
  3. 3.
    Kataoka H (1981) Expansion of Vaucheria cell apex caused by blue or red light. Plant Cell Physiol 22:583–595Google Scholar
  4. 4.
    Kataoka H (1975) Phototropism in Vaucheria geminata I. The action spectrum. Plant Cell Physiol 16:427–437Google Scholar
  5. 5.
    Kataoka H (1975) Phototropism in Vaucheria geminata II. The mechanism of bending and branching. Plant Cell Physiol 16:439–448Google Scholar
  6. 6.
    Kataoka H (1980) Phototropism: determination of an action spectrum in a tip-growing cell. In: Gantt E (ed) Handbook of phycological methods: developmental and cytological methods. Cambridge Univ Press, Cambridge, pp 205–218Google Scholar
  7. 7.
    Green PB, Erickson RO, Richmond PA (1970) On the physical basis of cell morphogenesis. Ann N Y Acad Sci 175:712–731CrossRefGoogle Scholar
  8. 8.
    Kataoka H (1987) The light growth response of Vaucheria. A conditio sine qua non of the phototropic response? Plant Cell Physiol 28:61–71Google Scholar
  9. 9.
    Kataoka H, Weisenseel MH (1988) Blue light promotes ionic current influx at the growing apex of Vaucheria terrestris. Planta 173:490–499CrossRefGoogle Scholar
  10. 10.
    Kataoka H (1982) Colchicine-induced expansion of Vaucheria cell apex. Alteration from isotropic to transversally anisotropic growth. Bot Mag Tokyo 95:317–330CrossRefGoogle Scholar
  11. 11.
    Kataoka H, Watanabe M (1993) Negative phototropism in Vaucheria terrestris regulated by calcium III. The role of calcium characterized by use of a high-power argon-ion laser as the source of unilateral blue light. Plant Cell Physiol 34:737–744CrossRefGoogle Scholar
  12. 12.
    Kataoka H (1977) Second positive and negative phototropism in Vaucheria geminata. Plant Cell Physiol 18:473–476CrossRefGoogle Scholar
  13. 13.
    Kataoka H (1988) Negative phototropism in Vaucheria terrestris regulated by calcium I. dependence on background blue light and external calcium concentration. Plant Cell Physiol 29:1323–1330Google Scholar
  14. 14.
    Kataoka H (1989) Phototropic inversion as regulated by external Ca-concentration. In: Tazawa M et al (eds) Plant water relations and growth under stress. Yamada Science Foundation, Osaka, Myu KK, Tokyo, pp 392–394Google Scholar
  15. 15.
    Kataoka H (1990) Negative phototropism in Vaucheria terrestris regulated by calcium II. Inhibition by Ca2+-channel blockers and mimesis by A23187. Plant Cell Physiol 31:933–940Google Scholar
  16. 16.
    Kataoka H, Watanabe M (1992) Ca2+ mediates the phototropic inversion of a tip-growing alga, Vaucheria,—a laser experiment. In: Masuda Y (ed) Plant cell walls as biopolymers with physiological functions. Yamada Science Foundation, Osaka, pp 149–151Google Scholar
  17. 17.
    Kataoka H, Takahashi F, Ootaki T (2000) Bimodal polarotropism of Vaucheria to polarized blue light: parallel polarotropism at high fluence rate corresponds to negative polarotropism. J Plant Res 113:1–10CrossRefGoogle Scholar
  18. 18.
    Takahashi F, Hishinuma T, Kataoka H (2001) Blue light-induced branching in Vaucheria. Requirement of nuclear accumulation in the irradiated region. Plant Cell Physiol 42:274–285CrossRefGoogle Scholar
  19. 19.
    Takahashi F, Yamagata D, Ishikawa M et al (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A 104:19625–19630CrossRefGoogle Scholar
  20. 20.
    Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  21. 21.
    Huysman MJJ, Fortunato AE, Matthijs M et al (2013) AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornatum). Plant Cell 25:215–228CrossRefGoogle Scholar
  22. 22.
    Ishikawa M, Takahashi F, Nozaki H et al (2009) Distribution and phylogeny of the blue-light receptors aureochromes in eukaryotes. Planta 230:543–552CrossRefGoogle Scholar
  23. 23.
    Christensen T (1969) Vaucheria collections from Vaucher's region. Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter 16:36Google Scholar
  24. 24.
    Henschel D (1992) Vergleichende ökologische Untersuchungen zur Saltztoleranz der euryhalien Xanthophyceae Vaucheria dichotoma (L). Martius von geographisch unterschiedlichen Standorten. Dissertation to Dr grade, Univ BremenGoogle Scholar
  25. 25.
    Åberg H, Fries L (1976) On cultivation of the alga Vaucheria dichotoma (Xanthophyceae) in axenic culture. Phycologia 15:133–141CrossRefGoogle Scholar
  26. 26.
    Henschel D, Kataoka H, Kirst GO (1991) Osmotic acclimation of the brackish water Xanthophyceae, Vaucheria dichotoma (L.) MARTIUS. Inorganic ion composition and amino acids. Bot Mag Tokyo 104:283–295CrossRefGoogle Scholar
  27. 27.
    Iseki M, Wada S (1995) Action spectrum in ultraviolet region for phototropism of Bryopsis rhizoid. Plant Cell Physiol 36:1033–1040CrossRefGoogle Scholar
  28. 28.
    Iseki M, Mizukami M, Wada S (1995) Positive phototropism in the thallus of Bryopsis plumosa. Plant Cell Physiol 36:971–976CrossRefGoogle Scholar
  29. 29.
    Iseki M, Mizukami M, Wada S (1995) Negative phototropism in the rhizoid of Bryopsis plumosa. Plant Cell Physiol 36:977–982CrossRefGoogle Scholar
  30. 30.
    Ishizawa K, Wada S (1979) Growth and phototropic bending in Boergesenia rhizoid. Plant Cell Physiol 20:973–982Google Scholar
  31. 31.
    Ishizawa K, Wada S (1979) Action spectrum of negative phototropism in Boergesenia forbesii. Plant Cell Physiol 20:983–987Google Scholar
  32. 32.
    Stein J (ed) (1973) Handbook of phycological methods. Culture methods and growth measurements. Cambridge Univ Press, LondonGoogle Scholar
  33. 33.
    Haupt W (1996) Plant movement. In: Salisbury FB (ed) units, symbols, and terminology for plant physiology. Oxford Univ Press, Oxford, pp 120–125Google Scholar
  34. 34.
    Buder J (1920) Neue phototropische Fundamentalversuche. Ber Dtsch Bot Ges 38:10–14Google Scholar
  35. 35.
    Kraml M (1994) Light direction and polarization. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht, pp 417–445CrossRefGoogle Scholar
  36. 36.
    Etzold H (1965) Der Polarotropisms und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta 64:254–280CrossRefGoogle Scholar
  37. 37.
    Wada M, Sugai M (1994) Photobiology of ferns. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht, pp 783–802CrossRefGoogle Scholar
  38. 38.
    Blaauw AH (1914) Licht und Wachstum I. Z Bot 6:641–703Google Scholar
  39. 39.
    Delbrück W, Reichardt W (1956) System analysis for the light growth reactions of Phycomyces. In: Rudnick D (ed) Cellular mechanisms in differentiation and growth. Princeton Univ Press, Princeton, pp 3–44Google Scholar
  40. 40.
    Rieth A (1980) Süßwasserflora von Mitteleuropa, Xanthophyceae im Mitteleuropa, Band 4, 2 Teil. Gustav Fischer, StuttgartGoogle Scholar
  41. 41.
    Kataoka H (1977) Phototropic sensitivity in Vaucheria geminata regulated by 3′,5′-cyclic AMP. Plant Cell Physiol 18:431–440CrossRefGoogle Scholar
  42. 42.
    Kataoka H (1981) Phototropisms in lower green plants. In: Furuya M (ed) Light and movement in life. Kyoritsu-Shuppan, Tokyo, pp 147–176 (in Japanese)Google Scholar
  43. 43.
    Takahashi F, Yamaguchi K, Hishinuma T et al (2003) Mitosis and mitotic wave propagation in the coenocytic alga, Vaucheria terrestris sensu Goetz. J Plant Res 116:381–388CrossRefGoogle Scholar
  44. 44.
    Andersen RA, Bailey JC (2002) Phylogenetic analysis of 32 strains of Vaucheria (Xanthophyceae) using the rbcL gene and its two flanking spacer regions. J Phycol 38:583–592CrossRefGoogle Scholar
  45. 45.
    Guillard RRL (1973) Methods for microflagellates and nanoplankton. In: Stein J (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge Univ Press, Cambridge, pp 69–84Google Scholar
  46. 46.
    Page JZ (1973) Methods for coenocytic algae. In: Stein J (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge Univ Press, Cambridge, pp 105–126Google Scholar
  47. 47.
    Åberg H (1978) Light and branch formation in the alga, Vaucheria dichotoma (Xanthophyceae). Physiol Plant 44:224–230CrossRefGoogle Scholar
  48. 48.
    Hisatomi O, Takeuchi K, Zikihara K et al (2013) Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1. Plant Cell Physiol 54:93–106CrossRefGoogle Scholar
  49. 49.
    Hisatomi H, Nakatani Y, Takeuchi K et al (2014) Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. J Biol Chem 289:17379–17391CrossRefGoogle Scholar
  50. 50.
    Toyooka T, Hisatomi O, Takahashi F et al (2011) Photoreactions of aureochrome-1. Biophys J 100:2801–2809CrossRefGoogle Scholar
  51. 51.
    Yamagishi T, Hishinuma T, Kataoka H (2003) Bicarbonate enhances synchronous division of the giant nuclei of sporophytes in Bryopsis plumosa. J Plant Res 116:295–300CrossRefGoogle Scholar
  52. 52.
    Yamagishi T, Hishinuma T, Kataoka H (2004) Novel sporophyte-like plants are regenerated from protoplasts fused between sporophytic and gametophytic protoplasts of Bryopsis plumosa. Planta 219:253–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hironao Kataoka
    • 1
  1. 1.Botanical GardensTohoku UniversitySendaiJapan

Personalised recommendations