Measurement of Phototropism of the Sporangiophore of Phycomyces blakesleeanus

  • Luis M. CorrochanoEmail author
  • Paul Galland
Part of the Methods in Molecular Biology book series (MIMB, volume 1924)


The giant sporangiophore, fruiting body, of the fungus Phycomyces blakesleeanus is a single cell that grows guided by several environmental signals, including light. The phototropic response has been investigated in detail. Three proteins, the components of a photoreceptor and transcription factor complex and a regulator of the signal transduction protein Ras, participate in the signal transduction pathway. We describe the basic methods for characterizing phototropic bending and the correlated elongation and rotation responses of the sporangiophore.

Key words

Phototropism Fungus Blue light Phycomyces Sporangiophore Growing zone Photoreceptor Threshold box Tropostat 


  1. 1.
    Bergman K, Burke PV, Cerdá-Olmedo E, David CN, Delbrück M, Foster KW, Goodell EW, Heisenberg M, Meissner G, Zalokar M, Dennison DS, Shropshire W Jr (1969) Phycomyces. Bacteriol Rev 33:99–157PubMedPubMedCentralGoogle Scholar
  2. 2.
    Cerdá-Olmedo E (2001) Phycomyces and the biology of light and color. FEMS Microbiol Rev 25:503–512CrossRefGoogle Scholar
  3. 3.
    Cerdá-Olmedo E, Lipson ED (eds) (1987) Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  4. 4.
    Galland P (1990) Phototropism of the Phycomyces sporangiophore: a comparison with higher plants. Photochem Photobiol 52:233–248CrossRefGoogle Scholar
  5. 5.
    Galland P (2001) Phototropism in Phycomyces. In: Häder DP, Lebert M (eds) Photomovement, vol 1. Comprehensive series in photosciences. Elsevier, Amsterdam, pp 621–657Google Scholar
  6. 6.
    Galland P, Lipson ED (1987) Blue-light reception in Phycomyces phototropism: evidence for two photosystems operating in low- and high-intensity ranges. Proc Natl Acad Sci U S A 84:104–108CrossRefGoogle Scholar
  7. 7.
    Galland P (1991) Photosensory adaptation in aneural organisms. Photochem Photobiol 54:1119–1134CrossRefGoogle Scholar
  8. 8.
    Galland P, Lipson ED (1985) Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH. Photochem Photobiol 41:331–335CrossRefGoogle Scholar
  9. 9.
    Martín-Rojas V, Greiner H, Wagner T, Fukshansky L, Cerdá-Olmedo E (1995) Specific tropism caused by ultraviolet C radiation in Phycomyces. Planta 197:63–68CrossRefGoogle Scholar
  10. 10.
    Galland P (1998) Reception of far-ultraviolet light in Phycomyces: antagonistic interaction with blue and red light. Planta 205:269–276CrossRefGoogle Scholar
  11. 11.
    Galland P, Eslava AP, Alvarez MI (1997) Photoreception and phototropism in Phycomyces: antagonistic interactions between far-UV, blue, and red light. Photochem Photobiol 66:879–884CrossRefGoogle Scholar
  12. 12.
    Bergman K, Eslava AP, Cerdá-Olmedo E (1973) Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet 123:1–16CrossRefGoogle Scholar
  13. 13.
    Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, Heitman J (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci U S A 103:4546–4551CrossRefGoogle Scholar
  14. 14.
    Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J, Corrochano LM, Eslava AP (2009) Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci U S A 106:7095–7100CrossRefGoogle Scholar
  15. 15.
    Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892CrossRefGoogle Scholar
  16. 16.
    Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6:725–736CrossRefGoogle Scholar
  17. 17.
    Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899CrossRefGoogle Scholar
  18. 18.
    Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V (2008) A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator. Mol Microbiol 70:1026–1036PubMedGoogle Scholar
  19. 19.
    Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037CrossRefGoogle Scholar
  20. 20.
    Polaino S, Villalobos-Escobedo JM, Shakya VP, Miralles-Durán A, Chaudhary S, Sanz C, Shahriari M, Luque EM, Eslava AP, Corrochano LM, Herrera-Estrella A, Idnurm A (2017) A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci Rep 7:44790CrossRefGoogle Scholar
  21. 21.
    Ortega JK, Truong JT, Munoz CM, Ramirez DG (2015) Cell wall loosening in the fungus Phycomyces blakesleeanus. Plants (Basel) 4:63–84CrossRefGoogle Scholar
  22. 22.
    Cosgrove DJ, Ortega JK, Shropshire WJ (1987) Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores. Biophys J 51:413–423CrossRefGoogle Scholar
  23. 23.
    Ortega JK, Bell SA, Erazo AJ (1992) Pressure clamp method to measure transpiration in growing single plant cells: demonstration with sporangiophores of Phycomyces. Plant Physiol 100:1036–1041CrossRefGoogle Scholar
  24. 24.
    Cohen R, Delbrück M (1958) Distribution of stretch and twist along the growing zone of the sporangiophore of Phycomyces and the distribution of response to a periodic illumination program. J Cell Comp Physiol 52:361–388CrossRefGoogle Scholar
  25. 25.
    Ortega JE, Lesh-Laurie GE, Espinosa MA, Ortega EL, Manos SM, Cunning MD, Olson JC (2003) Helical growth of stage-IVb sporangiophores of Phycomyces blakesleeanus: the relationship between rotation and elongation growth rates. Planta 216:716–722PubMedGoogle Scholar
  26. 26.
    Cohen RJ, Jan YN, Matricon J, Delbrück M (1975) Avoidance response, house response, and wind responses of the sporangiophore of Phycomyces. J Gen Physiol 66:67–95CrossRefGoogle Scholar
  27. 27.
    Russo VE, Halloran B, Gallori E (1977) Ethylene is involved in the autochemotropism of Phycomyces. Planta 134:61–66CrossRefGoogle Scholar
  28. 28.
    Dennison DS, Foster KW (1977) Intracellular rotation and the phototropic response of Phycomyces. Biophys J 18:103–123CrossRefGoogle Scholar
  29. 29.
    Oort AJP (1931) The spiral-growth of Phycomyces. Proc Kon Ned Akad Wet 34:564–575Google Scholar
  30. 30.
    Galland P, Wallacher Y, Finger H, Hannappel M, Tröster S, Bold E, Grolig F (2002) Tropisms in Phycomyces: sine law for gravitropism, exponential law for photogravitropic equilibrium. Planta 214:931–938CrossRefGoogle Scholar
  31. 31.
    Shropshire W (1962) The lens effect and phototropism of Phycomyces. J Gen Physiol 45:949–958CrossRefGoogle Scholar
  32. 32.
    Fukshansky L (1993) Intracellular processing of a spatially non-uniform stimulus: case-study of phototropism in Phycomyces. J Photochem Photobiol B19:161–186CrossRefGoogle Scholar
  33. 33.
    Tsuru T, Koga K, Aoyama H, Ootaki T (1988) Optics in Phycomyces blakesleeanus sporangiophores relative to determination of phototropic orientation. Exp Mycol 12:302–312CrossRefGoogle Scholar
  34. 34.
    Vogelmann TC, Haupt W (1985) The blue light gradient in unilaterally irradiated maize coleoptiles: measurement with a fiber optic probe. Photochem Photobiol 41:569–576CrossRefGoogle Scholar
  35. 35.
    Castle ES (1965) Differential growth and phototropic bending in Phycomyces. J Gen Physiol 48:409–423CrossRefGoogle Scholar
  36. 36.
    Fankhauser C, Christie JM (2015) Plant phototropic growth. Curr Biol 25:R384–R389CrossRefGoogle Scholar
  37. 37.
    Ludwig-Müller J, Schramm P, Hilgenberg W (1990) Indole-3-acetaldehyde reductase in Phycomyces blakesleeanus. Characterization of the enzyme. Physiol Plant 80:472–478CrossRefGoogle Scholar
  38. 38.
    Živanović BD, Ullrich KK, Steffens B, Spasić SZ, Galland P (2018) The effect of auxin (indole-3-acetic acid) on the growth rate and tropism of the sporangiophore of Phycomyces blakesleeanus and identification of auxin-related genes. Protoplasma 255:1331–1347CrossRefGoogle Scholar
  39. 39.
    Galland P (2002) Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium. Planta 215:779–784CrossRefGoogle Scholar
  40. 40.
    Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Alvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Canovas D, Cerdá-Olmedo E, Cheng JF, Dominguez A, Elias M, Eslava AP, Glaser F, Gutierrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavin JL, Lee SC, Li W, Lindquist E, López-Garcia S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vazquez R, Sanz C, Schackwitz W, Shahriari M, Shelest E, Silva-Franco F, Soanes D, Syed K, Tagua VG, Talbot NJ, Thon MR, Tice H, de Vries RP, Wiebenga A, Yadav JS, Braun EL, Baker SE, Garre V, Schmutz J, Horwitz BA, Torres-Martínez S, Idnurm A, Herrera-Estrella A, Gabaldon T, Grigoriev IV (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26:1577–1584CrossRefGoogle Scholar
  41. 41.
    Chaudhary S, Polaino S, Shakya VP, Idnurm A (2013) A new genetic linkage map of the zygomycete fungus Phycomyces blakesleeanus. PLoS One 8:e58931CrossRefGoogle Scholar
  42. 42.
    Whippo CW, Hangarter RP (2004) Phytochrome modulation of blue-light-induced phototropism. Plant Cell Environ 27:1223–1228CrossRefGoogle Scholar
  43. 43.
    Delbrück M, Katzir A, Presti D (1976) Responses of Phycomyces indicating optical excitation of the lowest triplet state of riboflavin. Proc Natl Acad Sci U S A 73:1969–1973CrossRefGoogle Scholar
  44. 44.
    Curry GM, Gruen HE (1959) Action spectra for the positive and negative phototropism of Phycomyces sporangiophores. Proc Natl Acad Sci U S A 45:797–804CrossRefGoogle Scholar
  45. 45.
    Galland P, Lipson ED (1985) Action spectra for phototropic balance in Phycomyces blakesleeanus: dependence on reference wavelength and intensity range. Photochem Photobiol 41:323–329CrossRefGoogle Scholar
  46. 46.
    Sutter RP (1975) Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci U S A 72:127–130CrossRefGoogle Scholar
  47. 47.
    Galland P, Russo VE (1984) Light and dark adaptation in Phycomyces phototropism. J Gen Physiol 84:101–118CrossRefGoogle Scholar
  48. 48.
    Galland P, Corrochano LM, Lipson ED (1989) Subliminal light control of dark adaptation kinetics in Phycomyces phototropism. Photochem Photobiol 49:485–491CrossRefGoogle Scholar
  49. 49.
    Dennison DS (1965) Steady-state phototropism in Phycomyces. J Gen Physiol 48:393–408CrossRefGoogle Scholar
  50. 50.
    Dennison DS, Bozof RP (1973) Phototropism and local adaptation in Phycomyces sporangiophores. J Gen Physiol 62:157–168CrossRefGoogle Scholar
  51. 51.
    Alvarez MI, Eslava AP, Lipson ED (1989) Phototropism mutants of Phycomyces blakesleeanus isolated at low light intensity. Exp Mycol 13:38–48CrossRefGoogle Scholar
  52. 52.
    Lipson ED, López-Díaz I, Pollock JA (1983) Mutants of Phycomyces with enhanced tropisms. Exp Mycol 7:241–252CrossRefGoogle Scholar
  53. 53.
    Batschelet E (1981) Circular statistic in biology. Academic Press, New YorkGoogle Scholar
  54. 54.
    Foster KW, Lipson ED (1973) The light growth response of Phycomyces. J Gen Physiol 62:590–617CrossRefGoogle Scholar
  55. 55.
    Lipson ED (1975) White noise analysis of Phycomyces light growth response system. I. Normal intensity range. Biophys J 15:989–1011CrossRefGoogle Scholar
  56. 56.
    Gamow RI, Böttger B (1981) Phycomyces: irregular growth patterns in stage IVb sporangiophores. J Gen Physiol 77:65–75CrossRefGoogle Scholar
  57. 57.
    Varjú D, Edgar L, Delbrück M (1961) Interplay between the reactions to light and to gravity in Phycomyces. J Gen Physiol 45:47–58CrossRefGoogle Scholar
  58. 58.
    Lipson ED, Häder DP (1984) Video data acquisition for movement responses in individual organisms. Photochem Photobiol 39:437–441CrossRefGoogle Scholar
  59. 59.
    Otto MK, Jayaram M, Hamilton RM, Delbrück M (1981) Replacement of riboflavin by an analogue in the blue-light photoreceptor of Phycomyces. Proc Natl Acad Sci U S A 78:266–269CrossRefGoogle Scholar
  60. 60.
    Meyer PW, Matus IJ, Berg HC (1987) Avoidance of Phycomyces in a controlled environment. Biophys J 51:425–437CrossRefGoogle Scholar
  61. 61.
    Campuzano V, Galland P, Alvarez MI, Eslava AP (1996) Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Photochem Photobiol 63:686–694CrossRefGoogle Scholar
  62. 62.
    Watanabe M, Furuya M, Miyoshi Y, Inoue Y, Iwahashi I, Matsumoto K (1982) Design and performance of the Ozakaki large spectrograph for photobiological research. Photochem Photobiol 36:491–498CrossRefGoogle Scholar
  63. 63.
    Löser G, Schäfer E (1986) Are there several photoreceptors involved in phototropism of Phycomyces blakesleeanus? Kinetic studies of dichromatic irradiation. Photochem Photobiol 43:195–204CrossRefGoogle Scholar
  64. 64.
    Galland P, Amon S, Senger H, Russo VEA (1995) Blue light reception in Phycomyces: red light sensitization in madC mutants. Bot Acta 108:344–350CrossRefGoogle Scholar
  65. 65.
    Iino M, Schäfer M (1984) Phototropic response of the stage I Phycomyces sporangiophore to a pulse of blue light. Proc Natl Acad Sci U S A 81:7103–7107CrossRefGoogle Scholar
  66. 66.
    Galland P, Palit A, Lipson ED (1985) Phycomyces: phototropism and light-growth response to pulse stimuli. Planta 165:538–547CrossRefGoogle Scholar
  67. 67.
    Shropshire W (1971) Phototropic bending rate in Phycomyces as a function of average growth rate and cell radius. In: Broda E (ed) The biophysics of cells and organs. Springer-Lederer, Vienna, pp 111–114Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
  2. 2.Fachbereich BiologiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations