Phototropism pp 157-163 | Cite as

Determination of Auxin Flow During Phototropic Responses Using Fluorescent Auxin Analogs

  • Tatsuya SakaiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1924)


Altered auxin distribution patterns and the formation of a lateral auxin gradient are often discussed in the context of phototropism. The DR5rev::GFP auxin reporter gene is commonly used in phototropism research in Arabidopsis. This study describes a fluorescent auxin analog, NBD-NAA, as an additional tool for the determination of auxin flow during phototropic responses.

Key words

Arabidopsis Auxin gradient Fluorescent auxin analog NBD-NAA Phototropism 



This work was supported by the Japan Society for the Promotion of Science (JSPS: KAKENHI 16H01231).


  1. 1.
    Iino M (2001) Phototropism in higher plants. In: Häder DP, Lebert M (eds) Photomovement. Elsevier, Amsterdam, pp 659–811CrossRefGoogle Scholar
  2. 2.
    Christie JM, Murphy AS (2013) Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100:35–46CrossRefGoogle Scholar
  3. 3.
    Goldsmith MHM, Thimann KV (1962) Some characteristics of movement of indole acetic acid in coleoptiles of Avena. I. Uptake, destruction, immobilization, and distribution of IAA during basipetal translocation. Plant Physiol 37:492–505CrossRefGoogle Scholar
  4. 4.
    Pickard BG, Thimann KV (1964) Transport and distribution of auxin during tropistic response. II. The lateral migration of auxin in phototropism of coleoptiles. Plant Physiol 39:341–350CrossRefGoogle Scholar
  5. 5.
    dela Fuente RK, Leopold AC (1968) Lateral movement of auxin in phototropism. Plant Physiol 43:1031–1036CrossRefGoogle Scholar
  6. 6.
    Gardner G, Shaw S, Wilkins MB (1974) IAA transport during the phototropic responses of intact Zea and Avena coleoptiles. Planta 121:237–251CrossRefGoogle Scholar
  7. 7.
    Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ 14:279–286CrossRefGoogle Scholar
  8. 8.
    Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R (2003) Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci U S A 100:11795–11800CrossRefGoogle Scholar
  9. 9.
    Matsuda S, Kajizuka T, Kadota A, Nishimura T, Koshiba T (2011) NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. J Exp Bot 62:3459–3466CrossRefGoogle Scholar
  10. 10.
    Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci U S A 103:236–241CrossRefGoogle Scholar
  11. 11.
    Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRefGoogle Scholar
  12. 12.
    Willige BC, Ahlers S, Zourelidou M, Barbosa IC, Demarsy E, Trevisan M, Davis PA, Roelfsema MR, Hangarter R, Fankhauser C, Schwechheimer C (2013) D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25:1674–1688CrossRefGoogle Scholar
  13. 13.
    Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971CrossRefGoogle Scholar
  14. 14.
    Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19CrossRefGoogle Scholar
  15. 15.
    Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907CrossRefGoogle Scholar
  16. 16.
    Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452CrossRefGoogle Scholar
  17. 17.
    Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9:e1001076CrossRefGoogle Scholar
  18. 18.
    Haga K, Sakai T (2012) PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis. Plant Physiol 160:763–776CrossRefGoogle Scholar
  19. 19.
    Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A 100:2987–2991CrossRefGoogle Scholar
  20. 20.
    Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911CrossRefGoogle Scholar
  21. 21.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90CrossRefGoogle Scholar
  22. 22.
    Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311CrossRefGoogle Scholar
  23. 23.
    Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106CrossRefGoogle Scholar
  24. 24.
    Hohm T, Demarsy E, Quan C, Allenbach Petrolati L, Preuten T, Vernoux T, Bergmann S, Fankhauser C (2014) Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 10:751CrossRefGoogle Scholar
  25. 25.
    Haga K, Hayashi K, Sakai T (2014) PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis. Plant Physiol 166:1535–1545CrossRefGoogle Scholar
  26. 26.
    Hayashi K, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014) Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 111:11557–11562CrossRefGoogle Scholar
  27. 27.
    Mravec J, Kračun SK, Zemlyanskaya E, Rydahl MG, Guo X, Pičmanová M, Sørensen KK, Růžička K, Willats WGT (2017) Click chemistry-based tracking reveals putative cell wall-located auxin binding sites in expanding cells. Sci Rep 7:15988CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations