Experimental Manipulation of Ploidy in Zebrafish Embryos and Its Application in Genetic Screens

  • Triveni Menon
  • Sreelaja NairEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)


Metazoan animals are typically diploid, possessing two sets of a chromosome in the somatic cells of an organism. In naturally diploid species, alteration from the endogenous diploid state is usually embryonic lethal. However, the ability to experimentally manipulate ploidy of animal embryos has fundamental as well as applied biology advantages. In this chapter we describe experimental procedures to convert normally diploid zebrafish embryos into haploid or tetraploid states. We also describe methodologies to verify the ploidy of embryos and the utility of ploidy manipulation in expediting the isolation of mutations using both forward and reverse genetic strategies in zebrafish.

Key words

Zebrafish Mutagenesis Ploidy Haploid Tetraploid Gynogenesis Heat shock Genetic screen 



Our research is funded by a Wellcome Trust/Department of Biotechnology India Alliance Intermediate Fellowship (IA/I/13/2/501042) to SN and by the Tata Institute of Fundamental Research, Mumbai.


  1. 1.
    Endersby J (2007) A Guinea Pig’s History of biology: the plants and animals who taught us the facts of life. Harvard University Press, Cambridge, MAGoogle Scholar
  2. 2.
    Schön I, Martens K, van Dijk PJ (2009) Lost sex: the evolutionary biology of parthenogenesis. Springer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Kubiak J, Paldi A, Weber M, Maro B (1991) Genetically identical parthenogenetic mouse embryos produced by inhibition of the first meiotic cleavage with cytochalasin D. Development 111:763–769PubMedGoogle Scholar
  4. 4.
    Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–134CrossRefGoogle Scholar
  5. 5.
    Li W, Shuai L, Wan H, Dong M, Wang M, Sang L et al (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490:407–411CrossRefGoogle Scholar
  6. 6.
    Komma DJ, Endow SA (1995) Haploidy and androgenesis in Drosophila. Proc Natl Acad Sci U S A 92:11884–11888CrossRefGoogle Scholar
  7. 7.
    Araki K, Okamoto H, Graveson AC, Nakayama I, Nagoya H (2001) Analysis of haploid development based on expression patterns of developmental genes in the medaka Oryzias latipes. Develop Growth Differ 43:591–599CrossRefGoogle Scholar
  8. 8.
    Corley-Smith GE, Lim CJ, Brandhorst BP (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142:1265–1276PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gurdon JB (1960) The effects of ultraviolet radiation on uncleaved eggs of Xenopus laevis. J Cell Sci S3:299–311Google Scholar
  10. 10.
    Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296CrossRefGoogle Scholar
  11. 11.
    Moens CB, Yan YL, Appel B, Force AG, Kimmel CB (1996) Valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122:3981–3990PubMedGoogle Scholar
  12. 12.
    Walker C (1999) Haploid screens and gamma-ray mutagenesis. Methods Cell Biol 60:43–70CrossRefGoogle Scholar
  13. 13.
    Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433CrossRefGoogle Scholar
  14. 14.
    Heier J, Takle KA, Hasley AO, Pelegri F (2015) Ploidy manipulation and induction of alternate cleavage patterns through inhibition of centrosome duplication in the early zebrafish embryo. Dev Dyn 244:1300–1312CrossRefGoogle Scholar
  15. 15.
    Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K et al (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724CrossRefGoogle Scholar
  16. 16.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  17. 17.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  18. 18.
    Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966CrossRefGoogle Scholar
  19. 19.
    van Eeden FJM, Granato M, Odenthal J, Haffter P (1998) Chapter 2: Developmental mutant screens in the zebrafish. Methods Cell Biol 60:21–41CrossRefGoogle Scholar
  20. 20.
    Pelegri F, Dekens MP, Schulte-Merker S, Maischein HM, Weiler C et al (2004) Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn 231:324–335CrossRefGoogle Scholar
  21. 21.
    Pelegri F, Mullins MC (2004) Genetic screens for maternal-effect mutations. Methods Cell Biol 77:21–51CrossRefGoogle Scholar
  22. 22.
    Pelegri F, Mullins MC (2016) Genetic screens for mutations affecting adult traits and parental-effect genes. Methods Cell Biol 135:39–87CrossRefGoogle Scholar
  23. 23.
    Pelegri F, Schulte-Merker S (1999) Chapter 1: A gynogenesis-based screen for maternal-effect genes in the zebrafish Danio rerio. Methods Cell Biol 60:1–20PubMedGoogle Scholar
  24. 24.
    Menon T, Nair S (2018) A transient window of resilience during early development minimizes teratogenic effects of heat in zebrafish embryos. Dev Dyn 247(8):992–1004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations