Advertisement

Embryological and Genetic Manipulation of Chick Development

  • Laura S. GammillEmail author
  • Bridget Jacques-Fricke
  • Julaine Roffers-Agarwal
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)

Abstract

The ability to combine embryological manipulations with gene function analysis in an amniote embryo makes the chick a valuable system for the vertebrate developmental biologist. This chapter describes methods for those unfamiliar with the chick system wishing to initiate experiments in their lab. After outlining methods to prepare chick embryos, protocols are provided for introducing beads or cells expressing secreted factors, and for culturing tissue explants as a means of assessing development in vitro. Approaches to achieve gain of function and loss of function (morpholino oligonucleotides) in chick are outlined, and methods for introducing these reagents by electroporation are detailed.

Key words

Chick Embryo culture Electroporation Morpholino oligonucleotide 

References

  1. 1.
    Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8(1):9–17PubMedGoogle Scholar
  2. 2.
    Streit A (2008) EC culture: a method to culture early chick embryos. In: PT Sharpe IM (ed) Molecular embryology, vol 461. Humana Press, New York, NY, pp 255–264CrossRefGoogle Scholar
  3. 3.
    Dickinson M, Selleck M, McMahon A, Bronner-Fraser M (1995) Dorsalization of the neural tube by the non-neural ectoderm. Development 121:2099–2106PubMedGoogle Scholar
  4. 4.
    Gammill LS, Bronner-Fraser M (2002) Genomic analysis of neural crest induction. Development 129(24):5731–5741CrossRefGoogle Scholar
  5. 5.
    Bronner-Fraser M, Garcia-Castro M (2008) Manipulations of neural crest cells or their migratory pathways. Methods Cell Biol 87:75–96CrossRefGoogle Scholar
  6. 6.
    Garcia-Castro MI, Marcelle C, Bronner-Fraser M (2002) Ectodermal Wnt function as a neural crest inducer. Science 297:848–851PubMedGoogle Scholar
  7. 7.
    Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380(6569):66–68CrossRefGoogle Scholar
  8. 8.
    Chesnutt C, Niswander L (2004) Plasmid-based short-hairpin RNA interference in the chicken embryo. Genesis 39(2):73–78CrossRefGoogle Scholar
  9. 9.
    Das RM, Van Hateren NJ, Howell GR, Farrell ER, Bangs FK, Porteous VC et al (2006) A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 294(2):554–563CrossRefGoogle Scholar
  10. 10.
    Morin V, Véron N, Marcelle C (2017) CRISPR/Cas9 in the chicken embryo. In: Sheng G (ed) Avian and reptilian developmental biology, vol 1650. Humana Press, New York, NY, pp 113–123CrossRefGoogle Scholar
  11. 11.
    Gandhi S, Piacentino M, Vieceli F, Bronner M (2017) Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Dev Biol 432:86–97CrossRefGoogle Scholar
  12. 12.
    Williams RM, Senanayake U, Artibani M, Taylor G, Wells D, Ahmed AA et al (2018) Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development 145(4):dev160333.  https://doi.org/10.1242/dev.160333CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Moulton J, Yan Y (2008) Using morpholinos to control gene expression. Curr Protoc Mol Biol 83:26.28.21–26.28.29Google Scholar
  14. 14.
    Moulton J (2017) Making a Morpholino experiment work: controls, Favoring specificity, improving efficacy, storage, and dose. In: Moulton HM (ed) Morpholino oligomers, vol 1565. Humana Press, New York, NY, pp 17–29CrossRefGoogle Scholar
  15. 15.
    Eisen J, Smith J (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743CrossRefGoogle Scholar
  16. 16.
    Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256CrossRefGoogle Scholar
  17. 17.
    Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129(9):2087–2098PubMedGoogle Scholar
  18. 18.
    McLarren K, Litsiou A, Streit A (2003) DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev Biol 259:34–47CrossRefGoogle Scholar
  19. 19.
    Swartz M, Eberhart J, Mastick G, Krull C (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21CrossRefGoogle Scholar
  20. 20.
    Simoes-Costa M, McKeown S, Tan-Cabugao J, Sauka-Spengler T, Bronner M (2012) Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is encrypted in the genome. PLoS Genet 8(12):e1003142CrossRefGoogle Scholar
  21. 21.
    Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40.  https://doi.org/10.1186/1741-7007-6-40CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bellairs R, Osmond M (1998) The atlas of Chick development. Academic Press, San Diego, CAGoogle Scholar
  23. 23.
    Fekete D, Cepko C (1993) Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol Cell Biol 13:1604–2613CrossRefGoogle Scholar
  24. 24.
    Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229(3):433–439CrossRefGoogle Scholar
  25. 25.
    Hamburger V, Hamilton H (1992) Republication of a series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272CrossRefGoogle Scholar
  26. 26.
    Conrad GW, Bee JA, Roche SM, Teillet MA (1993) Fabrication of microscalpels by electrolysis of tungsten wire in a meniscus. J Neurosci Methods 50(1):123–127CrossRefGoogle Scholar
  27. 27.
    Chapman S, Collignon J, Schoenwolf C, Lumsden A (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220:284–289CrossRefGoogle Scholar
  28. 28.
    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  29. 29.
    Cui C, Cheuvront TJ, Lansford RD, Moreno-Rodriguez RA, Schultheiss TM, Rongish BJ (2009) Dynamic positional fate map of the primary heart-forming region. Dev Biol 332(2):212–222CrossRefGoogle Scholar
  30. 30.
    Ezin AM, Fraser SE, Bronner-Fraser M (2009) Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Dev Biol 330(2):221–236CrossRefGoogle Scholar
  31. 31.
    Fernandez-Garre P, Rodriguez-Gallardo L, Gallego-Diaz V, Alvarez IS, Puelles L (2002) Fate map of the chicken neural plate at stage 4. Development 129(12):2807–2822PubMedGoogle Scholar
  32. 32.
    Lopez-Sanchez C, Garcia-Martinez V, Schoenwolf GC (2001) Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages. Cells Tissues Organs 169(4):334–346CrossRefGoogle Scholar
  33. 33.
    Nieto M, Patel K, Wilkinson D (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235CrossRefGoogle Scholar
  34. 34.
    Kos R, Reedy M, Johnson R, Erickson C (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128:1467–1479PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Laura S. Gammill
    • 1
    Email author
  • Bridget Jacques-Fricke
    • 1
    • 2
  • Julaine Roffers-Agarwal
    • 1
  1. 1.Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of BiologyHamline UniversitySaint PaulUSA

Personalised recommendations