Vertebrate Embryogenesis pp 17-32 | Cite as
Immunofluorescence of Microtubule Assemblies in Amphibian Oocytes and Early Embryos
Abstract
Amphibian oocytes and embryos are classical models to study cellular and developmental processes. For these studies, it is often advantageous to visualize protein organization. However, the large size and yolk distribution make imaging of deep structures in amphibian zygotes challenging. Here we describe in detail immunofluorescence (IF) protocols for imaging microtubule assemblies in early amphibian development. We developed these protocols to elucidate how the cell division machinery adapts to drastic changes in embryonic cell sizes. We describe how to image mitotic spindles, microtubule asters, chromosomes, and nuclei in whole-mount embryos, even when they are hundreds of micrometers removed from the embryo’s surface. Though the described methods were optimized for microtubule assemblies, they have also proven useful for the visualization of other proteins.
Key words
Xenopus Amphibians Immunofluorescence Yolk clearing Development Embryos Mitotic spindle Microtubule asters Large cellsNotes
Acknowledgments
We thank Sean Megason, Angela DePace, Evangelos Gatzogiannis, Mike Levine, and Laurence Lemaire for usage of their microscopes. Thanks to members of the Wühr Lab for comments on the manuscript. This work was supported by grants GM39565 and 1R35GM128813 from the National Institutes of Health and Princeton University startup funding.
Supplementary material
References
- 1.Swammerdam J (1737) Bibilia Naturae; sive historia insectorum, in classes certas redact 2Google Scholar
- 2.Baker JR (1951) Remarks on the discovery of cell-division. Isis 42(130):285–287CrossRefGoogle Scholar
- 3.Hertwig O (1893) Ueber den Werth der ersten Furchungszellen fuer die Organbildung des Embryo. Experimentelle Studien am Frosch- und Tritonei. Arch mikr Anat xlii:662–807CrossRefGoogle Scholar
- 4.Pflüger E (1884) Ueber die Einwirkung der Schwerkraft und anderer Bedingungen auf die Richtung der Zelltheilung. Pflügers Arch Eur J Physiol 34(1):607–616. https://doi.org/10.1007/BF01612880CrossRefGoogle Scholar
- 5.Wallingford JB, Liu KJ, Zheng Y (2010) Xenopus. Curr Biol 20(6):R263–R264. https://doi.org/10.1016/j.cub.2010.01.012CrossRefPubMedGoogle Scholar
- 6.Lohka MJ, Maller JL (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101(2):518–523CrossRefGoogle Scholar
- 7.Sawin KE, Mitchison TJ (1991) Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112(5):925–940CrossRefGoogle Scholar
- 8.Reinsch S, Karsenti E (1997) Movement of nuclei along microtubules in Xenopus egg extracts. Curr Biol 7(3):211–214CrossRefGoogle Scholar
- 9.Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220(4598):719–721CrossRefGoogle Scholar
- 10.Coleman TR, Carpenter PB, Dunphy WG (1996) The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87(1):53–63CrossRefGoogle Scholar
- 11.Levy DL, Heald R (2010) Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell 143(2):288–298. https://doi.org/10.1016/j.cell.2010.09.012CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605CrossRefGoogle Scholar
- 13.Wühr M, Dumont S, Groen AC, Needleman DJ, Mitchison TJ (2009) How does a millimeter-sized cell find its center. Cell Cycle 8(8):1115–1121CrossRefGoogle Scholar
- 14.Wühr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, Mitchison TJ (2008) Evidence for an upper limit to mitotic spindle length. Curr Biol 18(16):1256–1261. https://doi.org/10.1016/j.cub.2008.07.092CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Mitchison T, Wühr M, Nguyen P, Ishihara K, Groen A, Field CM (2012) Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton (Hoboken) 69(10):738–750. https://doi.org/10.1002/cm.21050CrossRefGoogle Scholar
- 16.Field CM, Pelletier JF, Mitchison TJ (2017) Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis. Methods Cell Biol 137:395–435. https://doi.org/10.1016/bs.mcb.2016.04.014CrossRefPubMedGoogle Scholar
- 17.Wühr M, Güttler T, Peshkin L, McAlister GC, Sonnett M, Ishihara K, Groen AC, Presler M, Erickson BK, Mitchison TJ, Kirschner MW, Gygi SP (2015) The nuclear proteome of a vertebrate. Curr Biol 25(20):2663–2671. https://doi.org/10.1016/j.cub.2015.08.047CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Peshkin L, Wühr M, Pearl E, Haas W, Freeman RM Jr, Gerhart JC, Klein AM, Horb M, Gygi SP, Kirschner MW (2015) On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev Cell 35(3):383–394. https://doi.org/10.1016/j.devcel.2015.10.010CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Lombard-Banek C, Moody SA, Nemes P (2016) High-sensitivity mass spectrometry for probing gene translation in single embryonic cells in the early frog (Xenopus) embryo. Front Cell Dev Biol 4:100. https://doi.org/10.3389/fcell.2016.00100CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Smits AH, Lindeboom RG, Perino M, van Heeringen SJ, Veenstra GJ, Vermeulen M (2014) Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs. Nucleic Acids Res 42(15):9880–9891. https://doi.org/10.1093/nar/gku661CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Gurdon JB, Wickens MP (1983) The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol 101:370–386CrossRefGoogle Scholar
- 22.Schultze O (1887) Untersuchungen uber die Reifung und Befruchtung des Amphibieneies. Erste Abhandlung. Z wiss Zool xlv:177–226Google Scholar
- 23.Kieserman EK, Lee C, Gray RS, Park TJ, Wallingford JB (2010) High-magnification in vivo imaging of Xenopus embryos for cell and developmental biology. Cold Spring Harb Protoc 2010(5):pdb prot5427. https://doi.org/10.1101/pdb.prot5427CrossRefPubMedGoogle Scholar
- 24.Karasaki S (1963) Studies on amphibian yolk 1. The ultrastructure of the yolk platelet. J Cell Biol 18:135–151CrossRefGoogle Scholar
- 25.Karasaki S (1963) Studies on amphibian yolk. 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J Ultrastruct Res 59:225–247CrossRefGoogle Scholar
- 26.Dent JA, Polson AG, Klymkowsky MW (1989) A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 105(1):61–74PubMedGoogle Scholar
- 27.Becker BE, Gard DL (2006) Visualization of the cytoskeleton in Xenopus oocytes and eggs by confocal immunofluorescence microscopy. Methods Mol Biol 322:69–86CrossRefGoogle Scholar
- 28.Wühr M, Tan ES, Parker SK, Detrich HW 3rd, Mitchison TJ (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20(22):2040–2045. https://doi.org/10.1016/j.cub.2010.10.024CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, vol 22. Garland Pub., New York, p 75Google Scholar
- 30.Mayor R, Morgan R, Sargent MG (1995) Induction of the prospective neural crest of Xenopus. Development 121(3):767–777PubMedGoogle Scholar
- 31.Vize P (2011) Inducing egg laying via hCG injection (Vize lab). http://wiki.xenbase.org/xenwiki/index.php/Inducing_egg_laying_via_hCG_injection_(Vize_lab)
- 32.VGP (2005) In vitro fertilization of Xenopus laevis (Conlon lab). http://wiki.xenbase.org/xenwiki/index.php/In_vitro_fertilization_of_Xenopus_laevis_(Conlon_lab)
- 33.VGP (2011) Dejellying embryos (Zorn lab). http://wiki.xenbase.org/xenwiki/index.php/Dejellying_embryos_(Zorn_lab)
- 34.Sive HL, Grainger RM, Harland RM (2007) Dejellying Xenopus laevis embryos. CSH Protoc 2007:pdb prot4731. https://doi.org/10.1101/pdb.prot4731CrossRefPubMedGoogle Scholar
- 35.Paddock SW, Eliceiri KW (2014) Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Methods Mol Biol 1075:9–47. https://doi.org/10.1007/978-1-60761-847-8_2CrossRefPubMedGoogle Scholar
- 36.Ulrich M (2015) Confocal laser scanning microscopy. Hautarzt 66(7):504–510. https://doi.org/10.1007/s00105-015-3632-yCrossRefPubMedGoogle Scholar
- 37.Gard DL (1999) Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Microsc Res Tech 44(6):388–414. https://doi.org/10.1002/(SICI)1097-0029(19990315)44:6<388::AID-JEMT2>3.0.CO;2-LCrossRefPubMedGoogle Scholar
- 38.Nguyen PA, Groen AC, Loose M, Ishihara K, Wühr M, Field CM, Mitchison TJ (2014) Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 346(6206):244–247. https://doi.org/10.1126/science.1256773CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Field CM, Groen AC, Nguyen PA, Mitchison TJ (2015) Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs. Mol Biol Cell 26(20):3628–3640. https://doi.org/10.1091/mbc.E15-04-0233CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Wühr M, Freeman RM Jr, Presler M, Horb ME, Peshkin L, Gygi SP, Kirschner MW (2014) Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database. Curr Biol 24(13):1467–1475. https://doi.org/10.1016/j.cub.2014.05.044CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Groen AC, Mitchison TJ (2016) Purification and fluorescent labeling of tubulin from Xenopus laevis egg extracts. Methods Mol Biol 1413:35–45. https://doi.org/10.1007/978-1-4939-3542-0_3CrossRefPubMedGoogle Scholar