Generation of Xenopus Haploid, Triploid, and Hybrid Embryos

  • Romain Gibeaux
  • Rebecca HealdEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)


Frog species of the genus Xenopus are widely used for studies of cell and developmental biology, and recent genome sequencing has revealed interesting phylogenetic relationships. Here we describe methods to generate haploid, triploid, and hybrid species starting from eggs and sperm of Xenopus laevis and Xenopus tropicalis that enable investigation of how genome size and content affect physiology at the organismal, cellular, and subcellular levels.

Key words

Xenopus Xenopus laevis Xenopus tropicalis Fertilization Embryology Ploidy Haploid Triploid Hybridization Hybrid 



We thank members of the Heald lab for input. We thank Maiko Kitaoka and Kelly Miller for critical reading of the manuscript. RG was supported by an HFSP long-term fellowship LT 0004252014-L. RH was supported by NIH R35 GM118183 and the Flora Lamson Hewlett Chair.


  1. 1.
    Briggs R (1947) The experimental production and development of triploid frog embryos. J Exp Zool 106:237–266CrossRefGoogle Scholar
  2. 2.
    Fankhauser G, Watson RC (1942) Heat-induced triploidy in the newt, Triturus viridescens. Proc Natl Acad Sci U S A 28:436–440CrossRefGoogle Scholar
  3. 3.
    Michaels CJ, Tapley B, Harding L, Bryant Z, Grant S (2015) Breeding and rearing the critically endangered lake Oku clawed frog (Xenopus longipes Loumont and Kobel 1991). Amphib Reptile Conserv 9:100–110Google Scholar
  4. 4.
    Tompkins R (1978) Triploid and gynogenetic diploid Xenopus laevis. J Exp Zool 203:251–255CrossRefGoogle Scholar
  5. 5.
    Gurdon JB (1962) The transplantation of nuclei between two species of Xenopus. Dev Biol 5:68–83CrossRefGoogle Scholar
  6. 6.
    Kawahara H (1978) Production of triploid and gynogenetic diploid Xenopus by cold treatment. Develop Growth Differ 20:227–236CrossRefGoogle Scholar
  7. 7.
    Müller WP, Thiébaud CH, Ricard L, Fischberg M (1978) The induction of triploidy by pressure in Xenopus laevis. Rev Suisse Zool 85:20–26CrossRefGoogle Scholar
  8. 8.
    Bürki E (1985) The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis, and their viable hybrid. Biochem Genet 23:73–88CrossRefGoogle Scholar
  9. 9.
    Narbonne P, Simpson DE, Gurdon JB (2011) Deficient induction response in a Xenopus nucleocytoplasmic hybrid. PLoS Biol 9:e1001197CrossRefGoogle Scholar
  10. 10.
    De Robertis EM, Black P (1979) Hybrids of Xenopus laevis and Xenopus borealis express proteins from both parents. Dev Biol 68:334–339CrossRefGoogle Scholar
  11. 11.
    Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:1–15CrossRefGoogle Scholar
  12. 12.
    Hamilton L (1963) An experimental analysis of the development of the haploid syndrome in embryos of Xenopus laevis. J Embryol Exp Morphol 11:267–278PubMedGoogle Scholar
  13. 13.
    Fox H, Hamilton L (1971) Ultrastructure of diploid and haploid cells of Xenopus laevis larvae. J Embryol Exp Morphol 26:81–98PubMedGoogle Scholar
  14. 14.
    Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing, New YorkGoogle Scholar
  15. 15.
    Gibeaux R, Acker R, Kitaoka M, Georgiou G, van Kruijsbergen I, Ford B et al (2018) Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553(7688):337–341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations