Advertisement

Manipulation of Developmental Function in Turtles with Notes on Alligators

  • Jacqueline E. Moustakas-Verho
  • Rebecca McLennan
  • Jennifer Spengler
  • Paul M. Kulesa
  • Judith A. Cebra-Thomas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)

Abstract

Reptiles have great taxonomic diversity that is reflected in their morphology, ecology, physiology, modes of reproduction, and development. Interest in comparative and evolutionary developmental biology makes protocols for the study of reptile embryos invaluable resources. The relatively large size, seasonal breeding, and long gestation times of turtles epitomize the challenges faced by the developmental biologist. We describe protocols for the preparation of turtle embryos for ex ovo culture, electroporation, in situ hybridization, and microcomputed tomography. Because these protocols have been adapted and optimized from methods used for frog, chick, and mouse embryos, it is likely that they could be used for other reptilian species. Notes are included for alligator embryos where appropriate.

Key words

Turtle In situ hybridization Electroporation Ex ovo culture Embryology Microcomputed tomography Alligator 

Notes

Acknowledgments

This work was supported by the Academy of Finland (JEM-V), Stowers Institute for Medical Research (RM, PMK), and NSF grant IOS-145177 (JACT). We are grateful to Kevin Padian, Richard Harland, Marvalee Wake, Scott Gilbert, Concordia Turtle Farm, Kliebert’s Turtle & Alligator Farm, and Ruth M. Elsey and the Louisiana Department of Wildlife and Fisheries.

References

  1. 1.
    MacCord K, Caniglia G, Moustakas-Verho JE, Burke AC (2015) The dawn of chelonian research: turtles between comparative anatomy and embryology in the 19th century. J Exp Zool B Mol Dev Evol 324B:169–180CrossRefGoogle Scholar
  2. 2.
    Sun W, Cai H, Zhang G, Zhang H, Bao H, Wang L et al (2017) Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci Rep 7:4433CrossRefGoogle Scholar
  3. 3.
    Nomura T, Yamashita W, Gotoh H, Ono K (2015) Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution. Front Neurosci 9:1–11CrossRefGoogle Scholar
  4. 4.
    Rice R, Kallonen A, Cebra-Thomas J, Gilbert SF (2016) Development of the turtle plastron, the order-defining skeletal structure. PNAS 113:5317–5322CrossRefGoogle Scholar
  5. 5.
    Moustakas-Verho JE, Zimm R, Cebra-Thomas J, Lempiäinen NK, Kallonen A, Mitchell KL et al (2014) The origin and loss of periodic patterning in the turtle shell. Development 141:3033–3039CrossRefGoogle Scholar
  6. 6.
    Williamson SA, Evans RG, Reina RD (2017) When is embryonic arrest broken in turtle eggs? Physiol Biochem Zool 90:523–532CrossRefGoogle Scholar
  7. 7.
    Greenbaum E (2002) A standardized series of embryonic stages for the emydidae turtle Trachemys scripta. Can J Zool 80:1350–1370CrossRefGoogle Scholar
  8. 8.
    Yntema CL (1968) A series of stages in the embryonic development of Chelydra serpentina. J Morphol 125:219–252CrossRefGoogle Scholar
  9. 9.
    Cebra-Thomas J, Tan F, Sistla S, Estes E, Bender G, Kim C et al (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool B Mol Dev Evol 304B:558–569CrossRefGoogle Scholar
  10. 10.
    Muramatsu T, Mizutani Y, Ohmori Y, Okumura J (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230:376–380CrossRefGoogle Scholar
  11. 11.
    Momose T, Tonegawa A, Takeuchi J, Ogawa H, Umesono K, Yasuda K (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Develop Growth Differ 41:335–344CrossRefGoogle Scholar
  12. 12.
    Itasaki N, Bel-Vialar S, Krumlauf R (1999) ‘Shocking’ developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1:E203–E207CrossRefGoogle Scholar
  13. 13.
    Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591CrossRefGoogle Scholar
  14. 14.
    Moustakas JE (2008) Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol Dev 10:29–36CrossRefGoogle Scholar
  15. 15.
    Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11CrossRefGoogle Scholar
  16. 16.
    Yntema CL (1964) Procurement and use of turtle embryos for experimental procedures. Anat Rec 149:577–586CrossRefGoogle Scholar
  17. 17.
    Burke AC (1991) The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627CrossRefGoogle Scholar
  18. 18.
    Nagashima H, Uchida K, Yamamoto K, Kuraku S, Usuda R, Kuratani S (2007) Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Dev Dyn 232:149–161CrossRefGoogle Scholar
  19. 19.
    Ewert MA (1985) Embryology of turtles. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia, vol 14. John Wiley and Sons, New York, pp 271–328Google Scholar
  20. 20.
    Ferguson MWJ (1985) Reproductive biology and embryology of the crocodilians. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia, vol 14. John Wiley and Sons, New York, pp 329–491Google Scholar
  21. 21.
    Williamson SA, Evans RG, Robinson NH, Reina RD (2017) Hypoxia as a novel method for preventing movement-induced mortality during translocation of turtle eggs. Biol Conserv 216:86–92CrossRefGoogle Scholar
  22. 22.
    Williamson SA, Evans RG, Manolis SC, Webb GJ, Reina RD (2017) Ecological and evolutionary significance of a lack of capacity for extended developmental arrest in crocodilian eggs. R Soc Open Sci 4:171439CrossRefGoogle Scholar
  23. 23.
    Bull JJ, Vogt RC, McCoy CJ (1982) Sex determining temperatures in turtles: a geographic comparison. Evolution 36:326–332CrossRefGoogle Scholar
  24. 24.
    Wibbels T, Bull JJ, Crews D (1991) Chronology and morphology of temperature-dependent sex determination. J Exp Zool 260:371–381CrossRefGoogle Scholar
  25. 25.
    Ferguson MWJ, Joanen T (1982) Temperature-dependent sex determination in Alligator mississippiensis. J Zool Lond 200:143–177CrossRefGoogle Scholar
  26. 26.
    Krull CE, Fengyun S, Swartz ME, Eberhart J, McLennan R, Chen Y et al (2011) Electroporation of chick and mouse embryos. In: Imaging in developmental biology: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 119–142Google Scholar
  27. 27.
    Lainoff AJ, Moustakas-Verho JE, Hu D, Kallonen A, Marcucio RS, Hlusko LJ (2015) A comparative examination of odontogenic gene expression in both toothed and toothless amniotes. J Exp Zool B Mol Dev Evol 324B:255–269CrossRefGoogle Scholar
  28. 28.
    Moustakas JE, Smith KK, Hlusko LJ (2011) Evolution and development of the mammalian dentition: Insights from the marsupial Monodelphis domestica. Developmental Dynamics 240 (1):232–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jacqueline E. Moustakas-Verho
    • 1
    • 2
  • Rebecca McLennan
    • 3
  • Jennifer Spengler
    • 3
    • 4
  • Paul M. Kulesa
    • 3
    • 5
  • Judith A. Cebra-Thomas
    • 4
  1. 1.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Stowers Institute for Medical ResearchKansas CityUSA
  4. 4.Biology DepartmentMillersville UniversityMillersvilleUSA
  5. 5.Department of Anatomy and Cell BiologyUniversity of Kansas School of MedicineKansas CityUSA

Personalised recommendations