Advertisement

Chemically Defined Neural Conversion of Human Pluripotent Stem Cells

  • Yu Chen
  • Carlos A. Tristan
  • Sunil K. Mallanna
  • Pinar Ormanoglu
  • Steven Titus
  • Anton Simeonov
  • Ilyas SingeçEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1919)

Abstract

Human pluripotent stem cells (hPSCs) are characterized by their ability to self-renew and differentiate into any cell type of the human body. To fully utilize the potential of hPSCs for translational research and clinical applications, it is critical to develop rigorous cell differentiation protocols under feeder-free conditions that are efficient, reproducible, and scalable for high-throughput projects. Focusing on neural conversion of hPSCs, here we describe robust small molecule-based procedures that generate neural stem cells (NSCs) in less than a week under chemically defined conditions. These protocols can be used to dissect the mechanisms of neural lineage entry and to further develop systematic protocols that produce the cellular diversity of the central nervous system at industrial scale.

Key words

Pluripotency Embryonic stem cell Induced pluripotent stem cell Neural induction Cell differentiation Culture medium Coating substrate Small molecules Pathway inhibition 

Notes

Acknowledgment

We thank all our colleagues at the NIH National Center for Advancing Translational Sciences (NCATS) for their collaboration and the NIH Common Fund (Regenerative Medicine Program) for funding the Stem Cell Translation Laboratory (SCTL).

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocyst. Science 282:1145–1147CrossRefGoogle Scholar
  2. 2.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  3. 3.
    Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140CrossRefGoogle Scholar
  4. 4.
    Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133CrossRefGoogle Scholar
  5. 5.
    Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221CrossRefGoogle Scholar
  6. 6.
    Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165CrossRefGoogle Scholar
  7. 7.
    Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40CrossRefGoogle Scholar
  8. 8.
    Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548CrossRefGoogle Scholar
  9. 9.
    Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280CrossRefGoogle Scholar
  10. 10.
    Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25:411–418CrossRefGoogle Scholar
  11. 11.
    Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509CrossRefGoogle Scholar
  12. 12.
    Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117CrossRefGoogle Scholar
  13. 13.
    Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3:196–206CrossRefGoogle Scholar
  14. 14.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280CrossRefGoogle Scholar
  15. 15.
    Singec I, Crain AM, Hou J, Tobe BT, Talantova M, Winquist AA, Doctor KS, Choy J, Huang X, La Monaca E, Horn DM, Wolf DA, Lipton SA, Gutierrez GJ, Brill LM, Snyder EY (2016) Quantitative analysis of human pluripotency and neural specification by in-depth (phospho)proteomic profiling. Stem Cell Reports 7:527–542CrossRefGoogle Scholar
  16. 16.
    Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190CrossRefGoogle Scholar
  17. 17.
    Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574CrossRefGoogle Scholar
  18. 18.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cell in defined conditions. Nat Biotechnol 24:185–187CrossRefGoogle Scholar
  19. 19.
    Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646CrossRefGoogle Scholar
  20. 20.
    Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H (2008) Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 375:27–32CrossRefGoogle Scholar
  21. 21.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429CrossRefGoogle Scholar
  22. 22.
    Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215CrossRefGoogle Scholar
  23. 23.
    Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G (2013) Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture medium. Nat Protoc 7:2029–2040CrossRefGoogle Scholar
  24. 24.
    Lippmann ES, Estevez-Silva MC, Ashton RS (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32:1032–1042CrossRefGoogle Scholar
  25. 25.
    Tchieu J, Zimmer B, Fattah F, Amin S, Zeltner N, Chen S, Studer L (2017) A modular platform for differentiation of human PSCs into all major ectodermal lineages. Cell Stem Cell 21:399–410CrossRefGoogle Scholar
  26. 26.
    Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbe L, Sermon K, Spits C (2016) Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Reports 6:330–341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Chen
    • 1
  • Carlos A. Tristan
    • 1
  • Sunil K. Mallanna
    • 1
  • Pinar Ormanoglu
    • 1
  • Steven Titus
    • 1
  • Anton Simeonov
    • 1
  • Ilyas Singeç
    • 1
    Email author
  1. 1.Stem Cell Translation Laboratory (SCTL), Division of Pre-Clinical InnovationNIH National Center for Advancing Translational Sciences (NCATS), NIH Regenerative Medicine ProgramRockvilleUSA

Personalised recommendations