Advertisement

Derivation of Neural Stem Cells from Human Parthenogenetic Stem Cells

  • Rodolfo GonzalezEmail author
  • Ibon Garitaonandia
  • Andrey Semechkin
  • Russell Kern
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1919)

Abstract

We have previously shown that human parthenogenetic stem cells (hpSC) can be chemically directed to differentiate into a homogeneous population of multipotent neural stem cells (hpNSC) that are scalable, cryopreservable, express all the appropriate neural markers, and can be further differentiated into functional dopaminergic neurons. Differentiation of hpSC into hpNSC provides a platform to study the molecular basis of human neural differentiation, to develop cell culture models of neural disease, and to provide neural stem cells for the treatment of neurodegenerative diseases. Additionally, the hpNSC that are generated could serve as a platform for drug discovery and the determination of pharmaceutical-induced neural toxicity. Here, we describe in detail the stepwise protocol that was developed in our laboratory that facilitates the highly efficient and reproducible differentiation of hpSC into hpNSC.

Key words

Parthenogenetic stem cells Pluripotent Differentiation Neural stem cells Transplantation 

References

  1. 1.
    Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9(3):432–449.  https://doi.org/10.1089/clo.2007.0033PubMedCrossRefGoogle Scholar
  2. 2.
    Revazova ES, Turovets NA, Kochetkova OD, Agapova LS, Sebastian JL, Pryzhkova MV, Smolnikova VI, Kuzmichev LN, Janus JD (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10(1):11–24.  https://doi.org/10.1089/clo.2007.0063PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025.  https://doi.org/10.1016/S0140-6736(05)67813-0PubMedCrossRefGoogle Scholar
  4. 4.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710PubMedCrossRefGoogle Scholar
  5. 5.
    Gonzalez R, Garitaonandia I, Abramihina T, Wambua GK, Ostrowska A, Brock M, Noskov A, Boscolo FS, Craw JS, Laurent LC, Snyder EY, Semechkin RA (2013) Deriving dopaminergic neurons for clinical use. A practical approach. Sci Rep 3(1463):1–5.  https://doi.org/10.1038/srep01463CrossRefGoogle Scholar
  6. 6.
    Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG (2009) A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4(5):416–426.  https://doi.org/10.1016/j.stem.2009.04.001PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou J, Su P, Li D, Tsang S, Duan E, Wang F (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28(10):1741–1750.  https://doi.org/10.1002/stem.504PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gonzalez R, Garitaonandia I, Crain A, Poustovoitov M, Abramihina T, Noskov A, Jiang C, Morey R, Laurent LC, Elsworth JD, Snyder EY, Redmond DE Jr, Semechkin R (2015) Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson's disease. Cell Transplant 24(4):681–690.  https://doi.org/10.3727/096368915X687769PubMedCrossRefGoogle Scholar
  9. 9.
    Gonzalez R, Garitaonandia I, Poustovoitov M, Abramihina T, McEntire C, Culp B, Attwood J, Noskov A, Christiansen-Weber T, Khater M, Mora-Castilla S, To C, Crain A, Sherman G, Semechkin A, Laurent LC, Elsworth JD, Sladek J, Snyder EY, Redmond DE Jr, Kern RA (2016) Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson’s disease. Cell Transplant.  https://doi.org/10.3727/096368916X691682PubMedCrossRefGoogle Scholar
  10. 10.
    ClinicalTrials.gov (2016) A study to evaluate the safety of neural stem cells in patients with parkinson’s disease. https://clinicaltrials.gov/ct2/show/NCT02452723

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rodolfo Gonzalez
    • 1
    Email author
  • Ibon Garitaonandia
    • 1
  • Andrey Semechkin
    • 1
  • Russell Kern
    • 1
  1. 1.International Stem Cell CorporationCarlsbadUSA

Personalised recommendations