Advertisement

Viability Detection of Foodborne Bacterial Pathogens in Food Environment by PMA-qPCR and by Microscopic Observation

  • Thomas Brauge
  • Graziella Midelet-Bourdin
  • Christophe SoumetEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1918)

Abstract

Foodborne pathogens are responsible of foodborne diseases and food poisoning and thus pose a great threat to food safety. These microorganisms can adhere to surface and form a biofilm composed of an extracellular matrix. This extracellular matrix protects bacterial cells from industrial environmental stress factors such as cleaning and disinfection operations. Moreover, during these environmental stresses, many bacterial species can enter a viable but nonculturable (VBNC) state. VBNC cells are characterized by a loss of cultivability on conventional bacteriological agar. This leads to an underestimation of total viable cells in environmental samples, and thus poses a risk for public health. In this chapter, we present a method to detect viable population of foodborne pathogens in industrial environmental samples using a molecular method with a combination of propidium monoazide (PMA) and quantitative PCR (qPCR) and a fluorescence microscopic method associated with the LIVE/DEAD BacLight™ viability stain.

Key words

Foodborne Viable Microscopy Live/dead staining Propidium monoazide PMA-qPCR 

Notes

Acknowledgments

Part of this work was supported by a grant from the CPER (Contrat de Plan Etat Région Nord-Pas de Calais, axe qualité et sécurité des ressources aquatiques).

References

  1. 1.
    Midelet-Bourdin G, Leleu G, Malle P (2007) Evaluation of the international reference methods NF EN ISO 11290-1 and 11290-2 and an in-house method for the isolation of Listeria monocytogenes from retail seafood products in France. J Food Prot 70:891–900CrossRefGoogle Scholar
  2. 2.
    Besnard V, Federighi M, Declerq E, Jugiau F, Cappelier JM (2002) Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet Res 33(4):359–370CrossRefGoogle Scholar
  3. 3.
    Besnard V, Federighi M, Cappelier JM (2000) Evidence of viable but non-culturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining. Food Microbiol 17(6):697–704CrossRefGoogle Scholar
  4. 4.
    Fricker M, Messelhausser U, Busch U, Scherer S, Ehling-Schulz M (2007) Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl Environ Microbiol 73(6):1892–1898CrossRefGoogle Scholar
  5. 5.
    Nocker A, Camper AK (2009) Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol Lett 291(2):137–142CrossRefGoogle Scholar
  6. 6.
    Fittipaldi M, Codony F, Adrados B, Camper AK, Morato J (2011) Viable real-time PCR in environmental samples: can all data be interpreted directly? Microb Ecol 61(1):7–12CrossRefGoogle Scholar
  7. 7.
    Brauge T, Faille C, Sadovskaya I, Charbit A, Benezech T, Shen Y, Loessner MJ, Bautista JR, Midelet-Bourdin G (2018) The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures. PLoS One 13(1):e0190879. https://doi.org/10.1371/journal.pone.0190879CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang X, Badoni M, Gill CO (2011) Use of propidium monoazide and quantitative PCR for differentiation of viable Escherichia coli from E. coli killed by mild or pasteurizing heat treatments. Food Microbiol 28(8):1478–1482. https://doi.org/10.1016/j.fm.2011.08.013CrossRefPubMedGoogle Scholar
  9. 9.
    Li B, Chen JQ (2013) Development of a sensitive and specific qPCR assay in conjunction with propidium monoazide for enhanced detection of live Salmonella spp. in food. BMC Microbiol 13:273. https://doi.org/10.1186/1471-2180-13-273CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Scariot MC, Venturelli GL, Prudencio ES, Arisi ACM (2018) Quantification of Lactobacillus paracasei viable cells in probiotic yoghurt by propidium monoazide combined with quantitative PCR. Int J Food Microbiol 264:1–7. https://doi.org/10.1016/j.ijfoodmicro.2017.10.021CrossRefPubMedGoogle Scholar
  11. 11.
    Pan Y, Breidt F (2007) Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73(24):8028–8031CrossRefGoogle Scholar
  12. 12.
    Brauge T, Faille C, Inglebert G, Dubois T, Morieux P, Slomianny C, Midelet-Bourdin G (2018) Comparative evaluation of DNA extraction methods for amplification by qPCR of superficial vs intracellular DNA from Bacillus spores. Int J Food Microbiol 266:289–294. https://doi.org/10.1016/j.ijfoodmicro.2017.12.012CrossRefPubMedGoogle Scholar
  13. 13.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797CrossRefPubMedGoogle Scholar
  14. 14.
    Nogva HK, Rudi K, Naterstad K, Holck A, Lillehaug D (2000) Application of 5′-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl Environ Microbiol 66(10):4266–4271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thomas Brauge
    • 1
    • 2
  • Graziella Midelet-Bourdin
    • 1
    • 2
  • Christophe Soumet
    • 2
    • 3
    Email author
  1. 1.Laboratory for Food SafetyFrench Agency for Food, Environmental and Occupational Health and SafetyBoulogne sur MerFrance
  2. 2.RMT ChleanJoint Technological Network: Hygienic Design of Production Lines and EquipmentFougèresFrance
  3. 3.Fougères LaboratoryANSESFougèresFrance

Personalised recommendations