Advertisement

EIS-Based Biosensors in Foodborne Pathogen Detection with a Special Focus on Listeria monocytogenes

  • Palmiro Poltronieri
  • Elisabetta Primiceri
  • Rajeswaran Radhakrishnan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1918)

Abstract

In this chapter methods and protocols for surfaces adapted to electrochemical impedance detection, antibody binding, electrolyte couples used, and instrumentation for EIS Biosensing are presented. Various technical bottlenecks have been overcome in recent years. Other limitations still present in this technique are discussed. We present the most recent applications in food pathogen detection based on EIS methods, as well as using other antibody-based platforms.

Key words

Food pathogens Biosensors Electrochemical impedance sensing (EIS) Surface activation Limit of detection 

References

  1. 1.
    Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA sensors and enzyme biosensors. Electroanalysis 15:913–947CrossRefGoogle Scholar
  2. 2.
    Brett CMA, Oliveira Brett AM, Serrano SHP (1999) EIS study of DNA-modified electrodes. Electrochim Acta 44:4233–4239CrossRefGoogle Scholar
  3. 3.
    Davis F, Nabok AV, Seamus PJ (2005) Species differentiation by DNA-modified carbon electrodes using AC impedimetric approach. Biosens Bioelectron 20:1531–1538CrossRefGoogle Scholar
  4. 4.
    Cai W, Peck JR, van der Weide DW et al (2004) Direct electrical detection of hybridization at DNA-modified silicon surface. Biosens Bioelectron 19:1013–1019CrossRefGoogle Scholar
  5. 5.
    Yang WS, Butler JE, Russell JN et al (2007) Direct electrical detection of antibody-antigen binding on diamond and silicon substrates using electrical impedance spectroscopy. Analyst 132:296–306CrossRefGoogle Scholar
  6. 6.
    De Silva MS, Zhang Y, Hesketh PJ et al (1995) Impedance based sensing of the specific binding reaction between Staphylococcus enterotoxin B and its antibody on an ultrathin Pt film. Biosens Bioelectron 10:675–682CrossRefGoogle Scholar
  7. 7.
    Pak SC, Penrose W, Hesketh PJ (2001) An ultrathin platinum film sensor to measure biomolecular binding. Biosens Bioelectron 16:371–379CrossRefGoogle Scholar
  8. 8.
    Mantzila AG, Prodromidis MI (2005) Performance of impedimetric biosensors based on anodically formed Ti/TiO2 electrodes. Electroanalysis 17(20):1878–1885CrossRefGoogle Scholar
  9. 9.
    Mantzila AG, Prodromidis MI (2006) Development and study of anodic Ti/TiO2 electrodes and their potential use as impedimetric immunosensors. Electrochim Acta 51:3537–3542CrossRefGoogle Scholar
  10. 10.
    Ruan CM, Yang L, Li YB (2002) Immunobiosensor chips for detection of Escherichia coli O157:H57 using electrochemical impedance spectroscopy. Anal Chem 74:4814–4820CrossRefGoogle Scholar
  11. 11.
    Corry B, Janelle U, Crawley C (2003) Probing direct binding affinity in electrochemical antibody-based sensors. Anal Chim Acta 496:103–116CrossRefGoogle Scholar
  12. 12.
    Blankespoor R, Limoges B, Shollhorn B et al (2005) Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Langmuir 21:3362–3375CrossRefGoogle Scholar
  13. 13.
    Teh HF, Gong H, Dong XD et al (2005) Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface. Anal Chim Acta 551:23–29CrossRefGoogle Scholar
  14. 14.
    Ramesh P, Sampath S (2003) Electrochemical characterization of binderless, recompressed exfoliated graphite electrodes: electron transfer kinetics and diffusion characteristics. Anal Chem 75:6949–6957CrossRefGoogle Scholar
  15. 15.
    Huang Y, Suni II (2008) Degenerate Si as an electrode material for electrochemical biosensors. J Electrochem Soc 155:J350CrossRefGoogle Scholar
  16. 16.
    Radhakrishnan R, Suni II (2016) Antibody regeneration on degenerate Si electrodes for calibration and reuse of impedance biosensors. Sens Biosensing Res 7:20–24CrossRefGoogle Scholar
  17. 17.
    Schoning MJ, Tzarouchas D, Beckers L et al (1996) A highly long term stable silicon pH sensor fabricated by pulsed laser deposition technique. Sensors Actuators B Chem 35:228–233CrossRefGoogle Scholar
  18. 18.
    HuayhuasChipana BC, Gomero JCM, Sotomayor MDPT (2014) Nanostructured screen-printed electrodes modified with self-assembled monolayers for determination of metronidazole in different matrices. J Braz Chem Soc 25:1737–1745Google Scholar
  19. 19.
    Kumar CSSR (2006) Nanomaterials for biosensors. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  20. 20.
    Lai RY, Seferos DS, Heeger AJ et al (2006) Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir 22:10796–10800CrossRefGoogle Scholar
  21. 21.
    Patel N, Davies MC, Hartshorne M et al (1997) Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 13:6485–6490CrossRefGoogle Scholar
  22. 22.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  23. 23.
    Rickert J, Gopel W, Beck W et al (1996) A mixed self-assembled monolayer for an impedimetric immunosensors. Biosens Bioelectron 11:757–768CrossRefGoogle Scholar
  24. 24.
    Steel AB, Levicky RL, Herne TM et al (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J 79:975–981CrossRefGoogle Scholar
  25. 25.
    Patolsky F, Katz E, Bardea A et al (1999) Enzyme linked amplified electrochemical sensing of oligonucleotide DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15:3703–3706CrossRefGoogle Scholar
  26. 26.
    Bain CD, Troughton EB, Tao YT et al (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321CrossRefGoogle Scholar
  27. 27.
    Manickam A. 2012 Integrated Impedance Spectroscopy Biosensors. Ph.D. Thesis University of Texas, AustinGoogle Scholar
  28. 28.
    Poirier GE, Tarlov MJ, Rushmeier HE (1994) Two-dimensional liquid phase and the p √3 phase of alkanethiol self-assembled monolayers on Au(111). Langmuir 10:3383CrossRefGoogle Scholar
  29. 29.
    Primiceri E, Chiriacò MS, De Feo F et al (2016) A multipurpose biochip for food pathogen detection. Anal Methods 8:3055–3060CrossRefGoogle Scholar
  30. 30.
    Maupas H, Soldatkin AP, Martelet C et al (1997) Direct immunosensing using differential electrochemical measurements of impedimetric variations. J Electroanal Chem 421:165–171CrossRefGoogle Scholar
  31. 31.
    Radhakrishnan R, Pali M, Lee HJ et al (2016) Impedance biosensor incorporating a carboxylate-terminated Bidentate Thiol for antibody immobilization. J Electrochem Soc 163:125–130CrossRefGoogle Scholar
  32. 32.
    Dijksma M, Boukamp BA, Kamp B et al (2002) Effect of hexacyanoferrate(ii/iii) on self-assembled monolayers of thioctic acid and 11-mercaptoundecanoic acid on gold. Langmuir 18:3105CrossRefGoogle Scholar
  33. 33.
    Homola J (2008) Surface Plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  34. 34.
    Huang J, Hemminger JC (1993) Photooxidation of thiols in self-assembled monolayers on gold. J Am Chem Soc 115:3342–3343CrossRefGoogle Scholar
  35. 35.
    Zamborini FP, Crooks RM (1997) In-situ electrochemical scanning Tunneling microscopy (ECSTM) study of cyanide-induced corrosion of naked and hexadecylmercaptan-passivated Au(111). Langmuir 13:122–126CrossRefGoogle Scholar
  36. 36.
    Srimsombat L, Zhang S, Lee TR (2010) Thermal stability of mono-, Bis-, and Tris-chelating alkanethiol films assembled on gold nanoparticles and evaporated flat gold. Langmuir 26:41–46CrossRefGoogle Scholar
  37. 37.
    Chinwangso P, Jamison AC, Lee TR (2011) Multidentate adsorbates for self-assembled monolayer films. Acc Chem Res 44:511–519CrossRefGoogle Scholar
  38. 38.
    Lee HJ, Jamison AC, Yuan Y et al (2013) Robust carboxylic acid terminated organic thin films and nanoparticle protectants generated from bidentate alkanethiols. Langmuir 29:10432–10439CrossRefGoogle Scholar
  39. 39.
    Huang Y, Bell MC, Suni II (2008) Impedance biosensor for peanut protein Ara h 1. Anal Chem 80:9157–9161CrossRefGoogle Scholar
  40. 40.
    Radhakrishnan R, Poltronieri P (2017) Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors (Basel) 7:63CrossRefGoogle Scholar
  41. 41.
    Cimaglia F, De Lorenzis E, Mezzolla V et al (2016) Detection of L. monocytogenes in enrichment cultures by immunoseparation and immunosensors. IEEE Sensors 16:7045–7052CrossRefGoogle Scholar
  42. 42.
    Morgan H, Green NG (eds) (2003) AC electrokinetics: colloids and nanoparticles. Baldock. Research Studies Press, PhiladelphiaGoogle Scholar
  43. 43.
    Wang D, Sigurdson M, Meinhart CD (2005) Experimental analysis of particle and fluid motion in AC electrokinetics. Exp Fluids 38:1–10CrossRefGoogle Scholar
  44. 44.
    Ahualli S, Jimenez ML, Carrique F et al (2009) AC electrokinetics of concentrated suspensions of soft particles. Langmuir 25:1986–1997CrossRefGoogle Scholar
  45. 45.
    Wu J (2006) Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Trans Nanotechnol 5:84–89CrossRefGoogle Scholar
  46. 46.
    Wu J (2008) Interactions of electrical fields with fluids: laboratory-on-a-chip applications. IET Nanobiotechnol 2:14–27CrossRefGoogle Scholar
  47. 47.
    Castellanos A, Ramos A, Gonzale A et al (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36:2584CrossRefGoogle Scholar
  48. 48.
    Liu X, Yang K, Wadhwa A et al (2011) Development of an AC electrokinetics-based immunoassay system for on-site serodiagnosis of infectious diseases. Sens Actuators, A 171:406–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Palmiro Poltronieri
    • 1
  • Elisabetta Primiceri
    • 2
  • Rajeswaran Radhakrishnan
    • 3
  1. 1.CNR-ISPALecceItaly
  2. 2.CNR-NanotecLecceItaly
  3. 3.Faraday TechnologiesClaytonUSA

Personalised recommendations