Advertisement

Raman Microscopy and Bone

  • Simon R. Goodyear
  • Richard M. AspdenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)

Abstract

Raman microscopy is a nondestructive technique requiring minimal sample preparation that can be used to measure the chemical properties of the mineral and collagen parts of bone simultaneously. Modern Raman instruments contain the necessary components and software to acquire the standard information required in most bone studies. The spatial resolution of the technique is about a micron. As it is nondestructive and small samples can be used, it forms a useful part of a bone characterization toolbox.

Key words

Raman Spectroscopy Bone chemistry Mechanical properties. 

References

  1. 1.
    Banwell CN, McCash EM (1994) Fundamentals of molecular spectroscopy, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Smith E (2005) Modern Raman spectroscopy: a practical approach. John Wiley, ChichesterGoogle Scholar
  3. 3.
    Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17(6):1118–1126CrossRefGoogle Scholar
  4. 4.
    Callender AF, Finney WF, Morris MD, Sahar ND, Kohn DH, Kozloff KM et al (2005) Dynamic mechanical testing system for Raman microscopy of bone tissue specimens. Vib Spectrosc 38(1–2):101–105CrossRefGoogle Scholar
  5. 5.
    Notingher I, Jell G, Notingher PL, Bisson I, Tsigkou O, Polak JM et al (2005) Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. J Mol Struct 744:179–185CrossRefGoogle Scholar
  6. 6.
    Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S et al (2009) Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 284(11):7100–7113CrossRefGoogle Scholar
  7. 7.
    Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36(5):893–901CrossRefGoogle Scholar
  8. 8.
    Goodyear SR, Gibson IR, Skakle JM, Wells RP, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 black 6 mice using Raman spectroscopy. Bone 44:899–907CrossRefGoogle Scholar
  9. 9.
    Goodyear SR (2009) Physicochemical methods for measuring the properties of bone and their application to mouse models of disease. PhD Thesis, University of AberdeenGoogle Scholar
  10. 10.
    Falgayrac G, Facq S, Leroy G, Cortet B, Penel G (2010) New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Appl Spectrosc 64(7):775–780CrossRefGoogle Scholar
  11. 11.
    Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18(6):1012–1019CrossRefGoogle Scholar
  12. 12.
    Ager JW, Nalla RK, Breeden KL, Ritchie RO (2005) Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. J BiomedOpt 10(3):034012Google Scholar
  13. 13.
    Ramasamy JG, Akkus O (2007) Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech 40(4):910–918CrossRefGoogle Scholar
  14. 14.
    Pezzotti G, Rondinella A, Marin E, Zhu W, Aldini NN, Ulian G et al (2017) Raman spectroscopic investigation on the molecular structure of apatite and collagen in osteoporotic cortical bone. J Mech Behav Biomed Mater 65:264–273CrossRefGoogle Scholar
  15. 15.
    Kerns JG, Buckley K, Gikas PD, Birch HL, McCarthy ID, Keen R et al (2015) Raman spectroscopy reveals evidence for early bone changes in osteoarthritis. Int J Exp Pathol 96(2). A3-AGoogle Scholar
  16. 16.
    Kerns JG, Gikas PD, Buckley K, Shepperd A, Birch HL, McCarthy I et al (2014) Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheumatol 66(5):1237–1246CrossRefGoogle Scholar
  17. 17.
    Unal M, Akkus O (2015) Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone 81:315–326CrossRefGoogle Scholar
  18. 18.
    de Carmejane O, Morris MD, Davis MK, Stixrude L, Tecklenburg M, Rajachar RM et al (2005) Bone chemical structure response to mechanical stress studied by high pressure Raman spectroscopy. Calcif Tissue Int 76(3):207–213CrossRefGoogle Scholar
  19. 19.
    Buckley K, Kerns JG, Birch HL, Gikas PD, Parker AW, Matousek P et al (2014) Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy. J Biomed Opt 19(11):111602CrossRefGoogle Scholar
  20. 20.
    Goodyear SR, Gibson IR, Skakle JMS, Wells RP, Aspden RM (2007) Cortical and trabecular bone from mice compared by Raman spectroscopy. J Bone Miner Res 22(7):1138 P48Google Scholar
  21. 21.
    Dehring KA, Crane NJ, Smukler AR, McHugh JB, Roessler BJ, Morris MD (2006) Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy. Appl Spectrosc 60(10):1134–1141CrossRefGoogle Scholar
  22. 22.
    Weber WH, Merlin R (2000) Raman scattering in materials science. Springer, Berlin, LondonCrossRefGoogle Scholar
  23. 23.
    Laserna JJ (1996) Modern techniques in Raman spectroscopy. Wiley, ChichesterGoogle Scholar
  24. 24.
    Long DA (1977) Raman spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Baranska H (1987) Laser Raman spectrometry:analytical applications. Chichester, HorwoodGoogle Scholar
  26. 26.
    Tanaka M, Young RJ (2006) Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers. J Mater Sci 41(3):963–991CrossRefGoogle Scholar
  27. 27.
    Feng G, Ochoa M, Maher JR, Awad HA, Berger AJ (2017) Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. J Biophotonics 10(8):990–996CrossRefGoogle Scholar
  28. 28.
    Liao Z, Sinjab F, Nommeots-Nomm A, Jones J, Ruiz-Cantu L, Yang J et al (2017) Feasibility of spatially offset Raman spectroscopy for in vitro and in vivo monitoring mineralization of bone tissue engineering scaffolds. Anal Chem 89(1):847–853CrossRefGoogle Scholar
  29. 29.
    Kallepitis C, Bergholt MS, Mazo MM, Leonardo V, Skaalure SC, Maynard SA et al (2017) Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun 8:14843CrossRefGoogle Scholar
  30. 30.
    Yeni YN, Yerramshetty J, Akkus O, Pechey C, Les CM (2006) Effect of fixation and embedding on Raman spectroscopic analysis of bone tissue. Calcif Tissue Int 78(6):363–371CrossRefGoogle Scholar
  31. 31.
    Cai TT, Zhang DM, Ben-Amotz D (2001) Enhanced chemical classification of Raman images using multiresolution wavelet transformation. Appl Spectrosc 55(9):1124–1130CrossRefGoogle Scholar
  32. 32.
    Barclay VJ, Bonner RF, Hamilton IP (1997) Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression. Anal Chem 69(1):78–90CrossRefGoogle Scholar
  33. 33.
    Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57(11):1363–1367CrossRefGoogle Scholar
  34. 34.
    Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53(11):1429–1435CrossRefGoogle Scholar
  35. 35.
    Morris MD, Finney WF (2004) Recent developments in Raman and infrared spectroscopy and imaging of bone tissue. Spectroscopy 18(2):155–159CrossRefGoogle Scholar
  36. 36.
    Carden A, Rajachar RM, Morris MD, Kohn DH (2003) Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif Tissue Int 72(2):166–175CrossRefGoogle Scholar
  37. 37.
    Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2006) Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol 156(3):489–496CrossRefGoogle Scholar
  38. 38.
    Awonusi A, Morris MD, Tecklenburg MM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81(1):46–52CrossRefGoogle Scholar
  39. 39.
    Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828CrossRefGoogle Scholar
  40. 40.
    Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mat Sci Eng, C 25(2):131–143CrossRefGoogle Scholar
  41. 41.
    Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int 68(3):156–162CrossRefGoogle Scholar
  42. 42.
    Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481CrossRefGoogle Scholar
  43. 43.
    Chatfield C, Colins AJ (1989) Principal component analysis. In: Introduction to multivariate analysis. Chapman and Hall, LondonGoogle Scholar
  44. 44.
    Hair JF (1998) Multivariate data analysis. Upper saddle river. Prentice-Hall, N.JGoogle Scholar
  45. 45.
    Kirchner MT, Edwards HGM, Lucy D, Pollard AM (1997) Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. J Raman Spectrosc 28(2–3):171–178CrossRefGoogle Scholar
  46. 46.
    Gentleman E, Swain RJ, Evans ND, Boonrungsiman S, Jell G, Ball MD et al (2009) Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater 8:763–770CrossRefGoogle Scholar
  47. 47.
    Chew W, Widjaja E, Garland M (2002) Band-target entropy minimization (BTEM): an advanced method for recovering unknown pure component spectra. Application to the FTIR spectra of unstable organometallic mixtures. Organometallics 21(9):1982–1990CrossRefGoogle Scholar
  48. 48.
    Makowski AJ, Pence IJ, Uppuganti S, Zein-Sabatto A, Huszagh MC, Mahadevan-Jansen A et al (2014) Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models. J Biomed Opt 19(11):117008CrossRefGoogle Scholar
  49. 49.
    Raghavan M, Sahar ND, Wilson RH, Mycek MA, Pleshko N, Kohn DH et al (2010) Quantitative polarized Raman spectroscopy in highly turbid bone tissue. J Biomed Opt 15(3):037001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Arthritis and Musculoskeletal Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations