Advertisement

Tracking Cancer Cells Colonization in Rodent Bone Using Two-Photon Microscopy

  • Gloria Allocca
  • Ning WangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)

Abstract

Two-photon microscopy has been widely accepted as a powerful tool to provide both qualitative and quantitative information in bone research. This chapter will describe a step-by-step protocol for using two-photon microscopy to track the colonization of cancer cells to bone using frozen bone samples of xenograft mouse models.

Key words

Two-photon microscopy Bone Xenograft Cancer metastasis 

References

  1. 1.
    Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 7(6):229–231. https://doi.org/10.1103/PhysRevLett.7.229CrossRefGoogle Scholar
  2. 2.
    Kawakami N, Flugel A (2010) Knocking at the brain's door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol 32(3):275–287. https://doi.org/10.1007/s00281-010-0216-xCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Malide D, Metais JY, Dunbar CE (2012) Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. Blood 120(26):e105–e116. https://doi.org/10.1182/blood-2012-06-440636CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sano H, Kikuta J, Furuya M et al (2015) Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo. Bone 74:134–139. https://doi.org/10.1016/j.bone.2015.01.013CrossRefPubMedGoogle Scholar
  5. 5.
    Xie Y, Yin T, Wiegraebe W et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457(7225):97–101. https://doi.org/10.1038/nature07639CrossRefPubMedGoogle Scholar
  6. 6.
    Wang N, Docherty FE, Brown HK et al (2014) Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res 29(12):2688–2696. https://doi.org/10.1002/jbmr.2300CrossRefPubMedGoogle Scholar
  7. 7.
    Wang N, Reeves KJ, Brown HK et al (2015) The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J Exp Clin Cancer Res 34:124. https://doi.org/10.1186/s13046-015-0240-8CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang N, Docherty F, Brown HK et al (2015) Mitotic quiescence, but not unique "stemness," marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB J 29(8):3141–3150. https://doi.org/10.1096/fj.14-266379CrossRefPubMedGoogle Scholar
  9. 9.
    Lawson MA, McDonald MM, Kovacic N et al (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983. https://doi.org/10.1038/ncomms9983CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dai J, Hensel J, Wang N et al (2016) Mouse models for studying prostate cancer bone metastasis. Bonekey Rep 5:e777. https://doi.org/10.1038/bonekey.2016.4CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Oncology and Metabolism, The Mellanby Centre for Bone ResearchThe University of SheffieldSheffieldUK

Personalised recommendations