Advertisement

Isolation, Purification, Generation, and Culture of Osteocytes

  • Jonathan H. Gooi
  • Ling Yeong Chia
  • Christina Vrahnas
  • Natalie A. SimsEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)

Abstract

Osteocytes reside within bone matrix and produce both paracrine and endocrine factors that influence the skeleton and other tissues. Despite their abundance and physiological importance, osteocytes have been difficult to study in vitro because they are difficult to extract and purify, and do not retain their phenotype in standard culture conditions. However, new techniques for this purpose are emerging. This chapter will describe three methods we use to study osteocytes: (1) isolating and purifying primary osteocytes from murine bone, with and without hematopoietic-lineage depletion, (2) differentiating cultured osteoblasts (or osteoblast cell lines) until they reach a stage of osteocytic gene expression, and (3) using the Ocy454 osteocyte-like cell line.

Key words

Osteocyte Osteoblast Cell purification 

Notes

Acknowledgment

The authors acknowledge the support of the National Health and Medical Research Council (Australia) (NHMRC) Project Grants 100242 and 100978. NAS is supported by an NHMRC Senior Research Fellowship. St Vincent’s Institute is also supported by State Government of Victoria’s Operational Infrastructure Support program.

References

  1. 1.
    Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116:281–290CrossRefGoogle Scholar
  2. 2.
    Buenzli PR, Sims NA (2015) Quantifying the osteocyte network in the human skeleton. Bone 75:144–150CrossRefGoogle Scholar
  3. 3.
    Schaffler MB, Cheung WY, Majeska R, Kennedy O (2014) Osteocytes: master orchestrators of bone. Calcif Tissue Int 94:5–24CrossRefGoogle Scholar
  4. 4.
    Kamel-ElSayed SA, Tiede-Lewis LM, Lu Y, Veno PA, Dallas SL (2015) Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone 76:129–140CrossRefGoogle Scholar
  5. 5.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238CrossRefGoogle Scholar
  6. 6.
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844CrossRefGoogle Scholar
  7. 7.
    Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, Bouwmeester T, Schirle M, Bueno-Lozano M, Fuentes FJ, Itin PH, Boudin E, de Freitas F, Jennes K, Brannetti B, Charara N, Ebersbach H, Geisse S, Lu CX, Bauer A, Van Hul W, Kneissel M (2011) Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 286:19489–19500CrossRefGoogle Scholar
  8. 8.
    Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315CrossRefGoogle Scholar
  9. 9.
    Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250CrossRefGoogle Scholar
  10. 10.
    Bergwitz C, Juppner H (2012) FGF23 and syndromes of abnormal renal phosphate handling. Adv Exp Med Biol 728:41–64CrossRefGoogle Scholar
  11. 11.
    Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234CrossRefGoogle Scholar
  12. 12.
    Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380CrossRefGoogle Scholar
  13. 13.
    Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67CrossRefGoogle Scholar
  14. 14.
    Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB (2009) Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res 24:597–605CrossRefGoogle Scholar
  15. 15.
    Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241CrossRefGoogle Scholar
  16. 16.
    Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD (2015) The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 290:16744–16758CrossRefGoogle Scholar
  17. 17.
    Mikuni-Takagaki Y, Kakai Y, Satoyoshi M, Kawano E, Suzuki Y, Kawase T, Saito S (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J Bone Miner Res 10:231–242CrossRefGoogle Scholar
  18. 18.
    Kawata A, Mikuni-Takagaki Y (1998) Mechanotransduction in stretched osteocytes–temporal expression of immediate early and other genes. Biochem Biophys Res Commun 246:404–408CrossRefGoogle Scholar
  19. 19.
    Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, Harris MA, Harris SE, Rowe DW (2004) Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone 35:74–82CrossRefGoogle Scholar
  20. 20.
    Halleux C, Kramer I, Allard C, Kneissel M (2012) Isolation of mouse osteocytes using cell fractionation for gene expression analysis. Methods Mol Biol 816:55–66CrossRefGoogle Scholar
  21. 21.
    Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, Kuo L, Shin DG, Rowe DW, Harris SE, Kalajzic I (2009) Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45:682–692CrossRefGoogle Scholar
  22. 22.
    Chia LY, Walsh NC, Martin TJ, Sims NA (2015) Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone 72:34–42CrossRefGoogle Scholar
  23. 23.
    Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SH, Han B, Onyia JE, Ho PW, Gillespie MT, Walsh NC, Chia LY, Quinn JM, Martin TJ, Sims NA (2010) Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 46:1486–1497CrossRefGoogle Scholar
  24. 24.
    Sun Q, Gu Y, Zhang W, Dziopa L, Zilberberg J, Lee W (2015) Ex vivo 3D osteocyte network construction with primary murine bone cells. Bone Res 3(1)Google Scholar
  25. 25.
    Allan EH, Hausler KD, Wei T, Gooi JH, Quinn JM, Crimeen-Irwin B, Pompolo S, Sims NA, Gillespie MT, Onyia JE, Martin TJ (2008) EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res 23:1170–1181CrossRefGoogle Scholar
  26. 26.
    Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120:582–592CrossRefGoogle Scholar
  27. 27.
    Takyar FM, Tonna S, Ho PW, Crimeen-Irwin B, Baker EK, Martin TJ, Sims NA (2013) EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. J Bone Miner Res 28:912–925CrossRefGoogle Scholar
  28. 28.
    Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, Gillespie MT, Martin TJ (2003) Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem 90:158–169CrossRefGoogle Scholar
  29. 29.
    Quach JM, Walker EC, Allan E, Solano M, Yokoyama A, Kato S, Sims NA, Gillespie MT, Martin TJ (2011) Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem 286:4186–4198CrossRefGoogle Scholar
  30. 30.
    Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634–2646CrossRefGoogle Scholar
  31. 31.
    Price C, Zhou X, Li W, Wang L (2011) Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 26:277–285CrossRefGoogle Scholar
  32. 32.
    Otter MW, Palmieri VR, Wu DD, Seiz KG, MacGinitie LA, Cochran GV (1992) A comparative analysis of streaming potentials in vivo and in vitro. J Orthop Res 10:710–719CrossRefGoogle Scholar
  33. 33.
    Ansari N, Ho PW, B Crimeen-Irwin B, Poulton IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ, Sims NA (2018) Autocrine and paracrine regulation of the murine skeleton by osteocyte-derived Parathyroid Hormone-related Protein. J Bone Miner Res, 33:137–153CrossRefGoogle Scholar
  34. 34.
    Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefGoogle Scholar
  35. 35.
    Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027CrossRefGoogle Scholar
  36. 36.
    Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J, Liakhovitskaia A, Ivanovs A, Frampton J, Zhao S, Medvinsky A (2011) Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med 208:1305–1315CrossRefGoogle Scholar
  37. 37.
    Pearce DJ, Ridler CM, Simpson C, Bonnet D (2004) Multiparameter analysis of murine bone marrow side population cells. Blood 103:2541–2546CrossRefGoogle Scholar
  38. 38.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967CrossRefGoogle Scholar
  39. 39.
    Singbrant S, Russell MR, Jovic T, Liddicoat B, Izon DJ, Purton LE, Sims NA, Martin TJ, Sankaran VG, Walkley CR (2011) Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood 117:5631–5642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jonathan H. Gooi
    • 1
  • Ling Yeong Chia
    • 1
    • 2
    • 3
  • Christina Vrahnas
    • 1
    • 2
    • 4
  • Natalie A. Sims
    • 1
    • 2
    Email author
  1. 1.Department of Medicine, St. Vincent’s Hospital MelbourneThe University of MelbourneMelbourneAustralia
  2. 2.St. Vincent’s Institute of Medical ResearchMelbourneAustralia
  3. 3.Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityClaytonAustralia
  4. 4.MRC Protein Phosphorylation & Ubiquitylation Unit, University of DundeeSir James Black CentreDundeeUK

Personalised recommendations