Bone Measurements by Peripheral Quantitative Computed Tomography in Rodents

  • Jürg Andreas GasserEmail author
  • Johannes Willnecker
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)


This chapter provides information for the in vivo use of peripheral quantitative computed tomography in rats and mice to determine bone density and cortical geometric data, including suggestions for study design, instrument setting, and data interpretation. This update also provides guidance for the use of pQCT to extract muscle and fat cross-sectional area information from the bone scans.

Key words

In vivo computed tomography Bone structure Bone mineral density Rat Mouse 


  1. 1.
    Guglielmi G, Glüer CC, Majumdar S, Blunt BA, Genant HK (1995) Current methods and advances in bone densitometry. Eur Radiol 5:129–139CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gasser JA (1997) Quantitative assessment of bone mass and geometry by pQCT in rats in vivo and Site specificity of changes at different skeletal sites. J Jpn Soc Bone Morphom 7:107–114Google Scholar
  3. 3.
    Gasser JA (1995) Assessing bone quantity by pQCT. Bone 17:S145–S154Google Scholar
  4. 4.
    Ferretti JL, Capozza RF, Zanchetta JR (1995) Mechanical validation of a tomographic (pQCT) index for non-invasive estimation of rat femur bending strength. Bone 17:S145–S162CrossRefGoogle Scholar
  5. 5.
    Ferretti JL, Capozza RF, Zanchetta JR (1995) Mechanical validation of a noninvasive (pQCT) index of bending strength in rat femurs. Bone 18:97–102CrossRefGoogle Scholar
  6. 6.
    Ferretti JL (1997) Non-invasive assessment of bone architecture and biomechanical properties in animals and humans employing pQCT technology. J Jpn Soc Bone Morphom 7:115–125Google Scholar
  7. 7.
    Schneider P, Börner W (1991) Peripheral quantitative computed tomography for bone mineral measurements using a new special QCT-scanner: methodology, normal values, comparison with manifest osteoporosis. Fortschr Röntgenstr 154:292–299CrossRefGoogle Scholar
  8. 8.
    Hermann GT (2010) Image reconstruction from projections: fundamentals of computerized tomography, 2nd edn. Springer, New York. ISBN 978-1-85233-617-2Google Scholar
  9. 9.
    Banu MJ, Orhii P, Mejia W, McCarter RJM, Mosekilde L, Thomsen JS, Kalu DN (1999) Analysis of the effects of growth hormone, voluntary exercise and food restriction on diaphyseal bone in female F344 rats. Bone 25:469–480CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Breen SA, Millest AJ, Loveday BE, Johnstone D, Waterton JC (1996) Regional analysis of bone mineral density in the distal femur and proximal tibia using peripheral computed tomography in the rat in vivo. Calcif Tissue Int 58:449–453PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ominsky MS, Brown DL, Van G, Cordover D, Pacheco E, Frazier E, Cherepow L, Higgins-Garn M, Aguirre JI, Wronski TJ, Stolina M, Zhou L, Pyrah I, Boyce RW (2015) Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone 81:380–391CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Graichen H, Lochmüller EM, Wolf E, Langkabel B, Stammberger T, Haubner M, Renner-Müller I, Engelmeier KH, Eckstein F (1998) A non-destructive technique for a 3-D microstructural phenotypic characterisation of bones in genetically altered mice: preliminary data in growth hormone transgenic animals and normal controls. Anat Embryol 199:239–248CrossRefGoogle Scholar
  14. 14.
    Schmidt C, Priemel M, Kohler T, Weusten A, Müller R, Amling M, Eckstein F (2003) Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (μCT). J Bone Miner Res 18:1486–1496CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chang MK, Kramer I, Huber T, Kinzel B, Guth-Gundel S, Leupin O, Kneissel M (2014) Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A 17:E5187–E5195. Scholar
  16. 16.
    Wronski TJ, Dann LM, Scott KS, Cintron M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366CrossRefGoogle Scholar
  17. 17.
    Yamazaki I, Yamaguchi H (1989) Characteristics of an ovariectomized osteopenic rat model. J Bone Miner Res 4:13–22CrossRefGoogle Scholar
  18. 18.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–192CrossRefGoogle Scholar
  19. 19.
    Rauch F, Schönau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone’s biological organisation. J Bone Miner Res 16:597–604CrossRefGoogle Scholar
  20. 20.
    Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of bending strength of rat femurs. Bone 18:97–102CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rittweger J, Michaelis I, Giehl M, Wüsecke P, Felsenberg D (2004) Adjusting for the partial volume effect in cortical bone analyses of pQCT. J Musculoskelet Neuronal Interact 4:436–441PubMedPubMedCentralGoogle Scholar
  22. 22.
    Andreassen TT, Jorgensen PH, Flyvbjerg A, Orskov A, Oxlund H (1995) Growth hormone stimulates bone formation and strength of cortical bone in aged rats. J Bone Miner Res 10:1057–1067CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Andreassen TT, Oxlund H (2000) The influence of combined parathyroid hormone and growth hormone treatment on cortical bone in aged ovariectomized rats. J Bone Miner Res 15:2266–2275CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Weber K, Goldberg M, Stangassinger M, Erben RG (2001) 1 α–hydroxyvitamin D2 is less toxic but not bone selective relative to 1 α-hydroxyvitamin D3 in ovariectomized rats. J Bone Miner Res 16:639–651CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ejersted C, Andreassen TT, Oxlund H, Jorgensen PH, Bak B, Haggblad J, Torring O, Nilsson MH (1993) Human parathyroid hormone (1–34) and (1–84) increase the mechanical strength and thickness of cortical bone in rats. J Bone Miner Res 8:1097–1101CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ejersted C, Andreassen TT, Nilsson MH, Oxlund H (1994) Human parathyroid hormone (1–34) increases bone formation and strength of cortical bone in aged rats. Eur J Endocrinol 130:201–207CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jee WSS, Mori S, Li XJ, Chan S (1990) Prostaglandin E2 enhances cortical bone mass and actiavtes intracortical bone remodeling in intact and ovariectomized female rats. Bone 11:253–266CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jee WSS, Ke HZ, Li XJ (1991) Long-term anabolic effects of prostaglandin-E2 on tibial diaphyseal bone in male rats. Bone Miner 15:33–55CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gunness-Hey M, Hock JM (1984) Increased trabecular bone mass in rats treated with synthetic parathyroid hormone. Metab Bone Dis Relat Res 5:177–181CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gunness-Hey M, Hock JM (1993) Anabolic effect of parathyroid hormone on cancellous and cortical bone histology. Bone 14:277–281CrossRefGoogle Scholar
  31. 31.
    Pun S, Dearden RL, Ratkus AM, Liang H, Wronski TJ (2001) Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats. Bone 28:220–226CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mori S, Jee WSS, Li XJ (1992) Production of new trabecular bone in osteopenic ovariectomized rats by prostaglandin E2. Calcif Tissue Int 50:80–87CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Erben RG, Bromm S, Stangassinger M (1998) Therapeutic effi cacy of 1α,25-hydroxyvitamin D3 and calcium in osteopenic ovariectomized rats: evidence for a direct anabolic effect of 1α,25-hydroxyvitamin D3 on bone. Endocrinology 139:4319–4328CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kneissel M, Boyde A, Gasser JA (2001) Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1–34). Bone 28:237–250CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralisation density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Banu J, Wang L, Kalu DN (2003) Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcif Tissue Int 73(2):196–201CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wang L, McMahan CA, Banu J, Okafor MC, Kalu DN (2003) Rodent model for investigating the effects of estrogen on bone and muscle relationship during growth. Calcif Tissue Int 72(2):151–155CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li X, Mohan S, Gu W, Wergedal J, Baylink DJ (2001) Quantitative assessment of forearm muscle size, forelimb grip strength, forearm bone mineral density, and forearm bone size in determining humerus breaking strength in 10 inbred strains of mice. Calcif Tissue Int 68(6):365–369CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, Judd AM, Robling AG, Fuchs RK (2013) Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone 54(1):98–105CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rachon D, Vortherms T, Seidlová-Wuttke D, Wuttke W (2008) Effects of black cohosh extract on body weight gain, intra-abdominal fat accumulation, plasma lipids and glucose tolerance in ovariectomized Sprague-Dawley rats. Maturitas 60(3-4):209–215CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Seidlova-Wuttke D, Nguyen BT, Wuttke W (2012) Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-beta-deleted mice. Comp Med 62(1):8–13PubMedPubMedCentralGoogle Scholar
  42. 42.
    Boyde A, Jones SJ, Aerssens J, Dequeker J (1995) Mineral density quantification of the human cortical illiac crest by backscattered electron image analysis: Variations with age, sex, and degree of osteoarthritis. Bone 16:619–627CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Roschger P, Plenk H Jr, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach for the quantification of bone mineral distribution: Backscattered electron image grey levels correlated to calcium K alpha-line intensities. Scanning Microsc 9:75–88PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Musculoskeletal DiseasesNovartis Institutes for BioMedical ResearchBaselSwitzerland
  2. 2.Stratec Medizintechnik GmbHPforzheimGermany

Personalised recommendations