Advertisement

In Vivo Models of Mechanical Loading

  • Behzad Javaheri
  • Nathalie Bravenboer
  • Astrid D. Bakker
  • Albert van der Veen
  • Roberto Lopes de Souza
  • Leanne Saxon
  • Andrew A. PitsillidesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)

Abstract

The skeleton fulfils its mechanical functions through structural organization and material properties of individual bones. It is stated that both cortical and trabecular morphology and mass can be (re)modelled in response to changes in mechanical strains engendered by load-bearing. To address this, animal models that enable the application of specific loads to individual bones have been developed. These are useful in defining how loading modulates (re)modeling and allow examination of the mechanisms that coordinate these events. This chapter describes how to apply mechanical loading to murine bones through points of articulation, which allows changes in endosteal, periosteal as well as trabecular bone to be revealed at multiple hierarchies, by a host of methodologies, including double fluorochrome labeling and computed tomography.

Key words

Mouse Mechanical loading Cortical bone Cancellous bone Adaptation 

References

  1. 1.
    Frost H (1983) A determinant of bone architecture: the minimum effective strain. Clin Orthop Relat Res 175:286–292Google Scholar
  2. 2.
    Frost HM (1988) Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42(3):145–156CrossRefGoogle Scholar
  3. 3.
    Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2(2):73–85PubMedGoogle Scholar
  4. 4.
    Lanyon L, Rubin C (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905CrossRefGoogle Scholar
  5. 5.
    Curtis TA, Ashrafi SH, Weber DF (1985) Canalicular communication in the cortices of human long bones. Anat Rec 212(4):336–344CrossRefGoogle Scholar
  6. 6.
    Lanyon L (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1):S37–S43CrossRefGoogle Scholar
  7. 7.
    Hert J, Liskova M, Landa J (1971) Reaction of bone to mechanical stimuli. 1. Continuous and intermittent loading of tibia in rabbit. Folia Morphol (Warsz) 19(3):290–300Google Scholar
  8. 8.
    Lanyon L, Bourn S (1979) The influence of mechanical function on the development and remodeling of the tibia. An experimental study in sheep. J Bone Joint Surg Am 61(2):263–273CrossRefGoogle Scholar
  9. 9.
    Rubin C, Lanyon L (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402CrossRefGoogle Scholar
  10. 10.
    Rubin C, Lanyon L (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107(2):321–327CrossRefGoogle Scholar
  11. 11.
    Turner C et al (1991) A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12(2):73–79CrossRefGoogle Scholar
  12. 12.
    Pead MJ, Skerry TM, Lanyon LE (1988) Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res 3(6):647–656CrossRefGoogle Scholar
  13. 13.
    Mosley J, Lanyon L (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23(4):313–318CrossRefGoogle Scholar
  14. 14.
    Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269(3):E438–E442PubMedGoogle Scholar
  15. 15.
    Hsieh YF et al (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 16(12):2291–2297CrossRefGoogle Scholar
  16. 16.
    McLeod KJ, Rubin C (1992) The effect of low-frequency electrical fields on osteogenesis. JBJS 74(6):920–929CrossRefGoogle Scholar
  17. 17.
    Rubin C et al (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452CrossRefGoogle Scholar
  18. 18.
    Rubin C et al (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17(2):349–357CrossRefGoogle Scholar
  19. 19.
    Rubin C, Xu G, JUDEX S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15(12):2225–2229CrossRefGoogle Scholar
  20. 20.
    Huang RP, Rubin CT, McLeod KJ (1999) Changes in postural muscle dynamics as a function of age. J Gerontol A Biomed Sci Med Sci 54(8):B352–B357CrossRefGoogle Scholar
  21. 21.
    Srinivasan S et al (2003) Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone 33(6):946–955CrossRefGoogle Scholar
  22. 22.
    Saxon L et al (2005) Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36(3):454–464CrossRefGoogle Scholar
  23. 23.
    Huddleston AL et al (1980) Bone mass in lifetime tennis athletes. JAMA 244(10):1107–1109CrossRefGoogle Scholar
  24. 24.
    Jones H, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59(2):204–208CrossRefGoogle Scholar
  25. 25.
    Lee E et al (1995) Variations in bone status of contralateral and regional sites in young athletic women. Med Sci Sports Exerc 27(10):1354–1361CrossRefGoogle Scholar
  26. 26.
    King J, Brelsford H, Tullos H (1969) Analysis of the pitching arm of the professional baseball pitcher. Clin Orthop Relat Res 67:116–123CrossRefGoogle Scholar
  27. 27.
    Beverly MC et al (1989) Local bone mineral response to brief exercise that stresses the skeleton. BMJ 299(6693):233–235CrossRefGoogle Scholar
  28. 28.
    Simkin A, Ayalon J, Leichter I (1987) Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 40(2):59–63CrossRefGoogle Scholar
  29. 29.
    Chambers TJ et al (1993) Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner 20(2):167–178CrossRefGoogle Scholar
  30. 30.
    Lanyon L et al (1982) Mechanically adaptative bone remodelling. J Biomech 15(3):141–154CrossRefGoogle Scholar
  31. 31.
    Rubin C, Lanyon L (1987) Osteoregulation nature of mechanical stimuli: function as a determinant fr adaptative remodeling in bone. J Orthop Res 5(2):300–310CrossRefGoogle Scholar
  32. 32.
    Turner RT (1999) Mice, estrogen, and postmenopausal osteoporosis. J Bone Miner Res 14(2):187–191CrossRefGoogle Scholar
  33. 33.
    Beamer W et al (1996) Genetic variability in adult bone density among inbred strains if mice. Bone 18:397–403CrossRefGoogle Scholar
  34. 34.
    Brodt M, Ellis C, Silva M (1999) Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res 14:2159–2166CrossRefGoogle Scholar
  35. 35.
    Torrance A et al (1994) Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure. Calcif Tissue Int 54(3):241–247CrossRefGoogle Scholar
  36. 36.
    Sztefek P et al (2010) Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. J Biomech 43(4):599–605CrossRefGoogle Scholar
  37. 37.
    Javaheri B et al (2015) Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. Bone 81:277–291CrossRefGoogle Scholar
  38. 38.
    Salmon PL et al (2015) Structure model index does not measure rods and plates in trabecular bone. Front Endocrinol 13;6:162Google Scholar
  39. 39.
    Fritton S, Rubin C (2001) In vivo measurements of bone deformation using strain gauges. In: Cowin SCE (ed) Bone mechanics handbook. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Lanyon L, Smith R (1969) Measurements of bone strain in the walking animal. Res Vet Sci 10(1):93–94CrossRefGoogle Scholar
  41. 41.
    Baggott D, Lanyon L (1977) An independent ‘post-mortem’calibration of electrical resistance strain gauges bonded to bone surfaces ‘in vivo’. J Biomech 10(10):615621–619622CrossRefGoogle Scholar
  42. 42.
    Carter DR, Schwab GH, Spengler DM (1980) Tensile fracture of cancellous bone. Acta Orthop Scand 51(1–6):733–741CrossRefGoogle Scholar
  43. 43.
    Bay BK et al (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226CrossRefGoogle Scholar
  44. 44.
    Forwood M et al (1998) Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation. Bone 23(3):307–310CrossRefGoogle Scholar
  45. 45.
    Reijnders CM et al (2007) Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol 192(1):131–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Behzad Javaheri
    • 1
  • Nathalie Bravenboer
    • 2
    • 3
  • Astrid D. Bakker
    • 4
  • Albert van der Veen
    • 5
  • Roberto Lopes de Souza
    • 6
  • Leanne Saxon
    • 7
  • Andrew A. Pitsillides
    • 1
    Email author
  1. 1.Skeletal Biology Group, Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
  2. 2.Department Clinical ChemistryVU University Medical CenterAmsterdamThe Netherlands
  3. 3.Center for Bone Quality and Department of Internal Medicine, Division EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Department of Oral Cell BiologyAcademic Centre for Dentistry AmsterdamAmsterdamThe Netherlands
  5. 5.Department of Physics and Medical TechnologyVU University Medical CenterAmsterdamThe Netherlands
  6. 6.Departamento de ClínicaUniversidade Federal de Mato Grosso (UFMT)CuiabáBrazil
  7. 7.University College LondonLondonUK

Personalised recommendations