Advertisement

Monosodium Glutamate (MSG)-Induced Animal Model of Type 2 Diabetes

  • Zahra Bahadoran
  • Parvin Mirmiran
  • Asghar GhasemiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1916)

Abstract

In 1976, an animal model of type 2 diabetes (T2DM) was described by Cameron et al. using injection of monosodium glutamate (MSG) in KK mice during the neonatal period. Some years later, similar models have been developed by various doses and durations and the main of these models exhibited obesity and features of diabetes mellitus, including glycosuria, hyperglycemia, hyperinsulinemia, decreased glucose tolerance, and insulin sensitivity. Studies indicated that MSG treatment of newborn animals generates necrosis of neuronal cells of the hypothalamic ventromedial nucleus and arcuate nucleus. Neonatal MSG-treatment was related to normoglycemic-normoinsulinemic state at young ages and development of obesity and hyperinsulinemia at adult ages. Following observation of a severe hypertrophy of pancreatic islets due to the proliferation of β-cells in MSG-treated mice, this model has been proposed as a useful animal model of human T2DM. A higher dose of MSG (≥4 mg/g body weight) accompanied by a longer follow-up duration (>6 months) are needed to establish a typical animal model of T2DM.

Key words

Monosodium glutamate Type 2 diabetes Obesity Insulin resistance Animal model 

References

  1. 1.
    American Diabetes Association (2018) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1):S13–S27.  https://doi.org/10.2337/dc18-S002Google Scholar
  2. 2.
    Ghasemi A, Khalifi S, Jedi S (2014) Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung 101(4):408–420PubMedGoogle Scholar
  3. 3.
    Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47(3):186–198PubMedGoogle Scholar
  4. 4.
    Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472PubMedPubMedCentralGoogle Scholar
  5. 5.
    King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894PubMedPubMedCentralGoogle Scholar
  6. 6.
    Gheibi S, Kashfi K, Ghasemi A (2017) A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother 95:605–613PubMedGoogle Scholar
  7. 7.
    Halpern BP (2000) Glutamate and the flavor of foods. J Nutr 130(4):910S–914SPubMedGoogle Scholar
  8. 8.
    Tanphaichitr V, Leelahagul P, Suwan K (2000) Plasma amino acid patterns and visceral protein status in users and nonusers of monosodium glutamate. J Nutr 130(4S Suppl):1005s–1006sPubMedGoogle Scholar
  9. 9.
    Insawang T, Selmi C, Cha'on U, Pethlert S, Yongvanit P, Areejitranusorn P et al (2012) Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutr Metab (Lond) 9(1):50.  https://doi.org/10.1186/1743-7075-9-50Google Scholar
  10. 10.
    Shi Z, Luscombe-Marsh ND, Wittert GA, Yuan B, Dai Y, Pan X et al (2010) Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu nutrition study of Chinese adults. Br J Nutr 104(3):457–463PubMedGoogle Scholar
  11. 11.
    US Food and Drug Administration D (2012) Questions and answers on monosodium glutamate (MSG). US Department of Health and Human Services Nov 19. https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm328728.htm
  12. 12.
    Maluly HDB, Arisseto-Bragotto AP, Reyes FGR (2017) Monosodium glutamate as a tool to reduce sodium in foodstuffs: technological and safety aspects. Food Sci Nutr 5(6):1039–1048PubMedPubMedCentralGoogle Scholar
  13. 13.
    Shi Z, Yuan B, Taylor AW, Dai Y, Pan X, Gill TK et al (2011) Monosodium glutamate is related to a higher increase in blood pressure over 5 years: findings from the Jiangsu nutrition study of Chinese adults. J Hypertens 29(5):846–853PubMedGoogle Scholar
  14. 14.
    He K, Zhao L, Daviglus ML, Dyer AR, Van Horn L, Garside D et al (2008) Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP study. Obesity (Silver Spring) 16(8):1875–1880Google Scholar
  15. 15.
    Baculikova M, Fiala R, Jezova D, Macho L, Zorad S (2008) Rats with monosodium glutamate-induced obesity and insulin resistance exhibit low expression of Galpha(i2) G-protein. Gen Physiol Biophys 27(3):222–226PubMedGoogle Scholar
  16. 16.
    Macho L, Fickova M, Jezova ZS (2000) Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats. Physiol Res 49(Suppl 1):S79–S85PubMedGoogle Scholar
  17. 17.
    Zorad S, Jezova D, Szabova L, Macho L, Tybitanclova K (2003) Low number of insulin receptors but high receptor protein content in adipose tissue of rats with monosodium glutamate-induced obesity. Gen Physiol Biophys 22(4):557–560PubMedGoogle Scholar
  18. 18.
    Zorad S, Macho L, Jezova D, Fickova M (1997) Partial characterization of insulin resistance in adipose tissue of monosodium glutamate-induced obese rats. Ann N Y Acad Sci 827:541–545PubMedGoogle Scholar
  19. 19.
    Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C et al (2015) Monosodium glutamate dietary consumption decreases pancreatic beta-cell mass in adult Wistar rats. PLoS One 10(6):e0131595.  https://doi.org/10.1371/journal.pone.0131595PubMedPubMedCentralGoogle Scholar
  20. 20.
    Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C, Prasongwattana V, Cha’on U (2015) Monosodium glutamate dietary consumption decreases pancreatic β-cell mass in adult Wistar rats. PLoS One 10(6):e0131595.  https://doi.org/10.1371/journal.pone.0131595PubMedPubMedCentralGoogle Scholar
  21. 21.
    Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, Aburada M, Miyamoto K (2006) Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim 55(2):109–115PubMedGoogle Scholar
  22. 22.
    Sasaki Y, Suzuki W, Shimada T, Iizuka S, Nakamura S, Nagata M, Fujimoto M, Tsuneyama K, Hokao R, Miyamoto K, Aburada M (2009) Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci 85(13–14):490–498PubMedGoogle Scholar
  23. 23.
    Cameron DP, Poon TK, Smith GC (1976) Effects of monosodium glutamate administration in the neonatal period on the diabetic syndrome in KK mice. Diabetologia 12(6):621–626PubMedGoogle Scholar
  24. 24.
    Sartin JL, Lamperti AA, Kemppainen RJ (1985) Alterations in insulin and glucagon secretion by monosodium glutamate lesions of the hypothalamic arcuate nucleus. Endocr Res 11(3–4):145–155PubMedGoogle Scholar
  25. 25.
    Kubota A, Nakagawa Y, Igarashi Y (1994) Studies of gene expression in liver of insulin-like growth factor (IGF)-I, IGF binding protein-3 and growth hormone (GH) receptor/GH binding protein in rats treated neonatally with monosodium glutamate. Horm Metab Res 26(11):497–503PubMedGoogle Scholar
  26. 26.
    Meister B, Ceccatelli S, Hokfelt T, Anden NE, Anden M, Theodorsson E (1989) Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions. Exp Brain Res 76(2):343–368PubMedGoogle Scholar
  27. 27.
    Cameron DP, Cutbush L, Opat F (1978) Effects of monosodium glutamate-induced obesity in mice on carbohydrate metabolism in insulin secretion. Clin Exp Pharmacol Physiol 5(1):41–51PubMedGoogle Scholar
  28. 28.
    Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T (1998) The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 95(25):15043–15048PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ikeda H (1994) KK mouse. Diabetes Res Clin Pract 24(Suppl):S313–S316PubMedGoogle Scholar
  30. 30.
    Tanaka K, Shimada M, Sasahara A, Oya N, Fujiyama Y, Hosoda S (1983) Neonatal monosodium glutamate-induced lesions of hypothalamus increase intestinal fat absorption in adult mice. Exp Neurol 79(1):141–151PubMedGoogle Scholar
  31. 31.
    Nakajima H, Tochino Y, Fujino-Kurihara H, Yamada K, Gomi M, Tajima K et al (1985) Decreased incidence of diabetes mellitus by monosodium glutamate in the non-obese diabetic (NOD) mouse. Res Commun Chem Pathol Pharmacol 50(2):251–257PubMedGoogle Scholar
  32. 32.
    Oida K, Nakai T, Hayashi T, Miyabo S, Takeda R (1984) Plasma lipoproteins of monosodium glutamate-induced obese rats. Int J Obes 8(5):385–391PubMedGoogle Scholar
  33. 33.
    Dolnikoff M, Martin-Hidalgo A, Machado UF, Lima FB, Herrera E (2001) Decreased lipolysis and enhanced glycerol and glucose utilization by adipose tissue prior to development of obesity in monosodium glutamate (MSG) treated-rats. Int J Obes Relat Metab Disord 25(3):426–433PubMedGoogle Scholar
  34. 34.
    Machado UF, Shimizu Y, Saito M (1993) Decreased glucose transporter (GLUT 4) content in insulin-sensitive tissues of obese aurothioglucose- and monosodium glutamate-treated mice. Horm Metab Res 25(9):462–465PubMedGoogle Scholar
  35. 35.
    Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS (1997) Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res 30(5):671–674PubMedGoogle Scholar
  36. 36.
    Papa PC, Seraphim PM, Machado UF (1997) Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. Int J Obes Relat Metab Disord 21(11):1065–1070PubMedGoogle Scholar
  37. 37.
    Iwase M, Yamamoto M, Iino K, Ichikawa K, Shinohara N, Yoshinari M et al (1998) Obesity induced by neonatal monosodium glutamate treatment in spontaneously hypertensive rats: an animal model of multiple risk factors. Hypertens Res 21(1):1–6PubMedGoogle Scholar
  38. 38.
    Araujo TR, Freitas IN, Vettorazzi JF, Batista TM, Santos-Silva JC, Bonfleur ML et al (2017) Benefits of L-alanine or L-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity. Eur J Nutr 56(6):2069–2080PubMedGoogle Scholar
  39. 39.
    Maiter D, Underwood LE, Martin JB, Koenig JI (1991) Neonatal treatment with monosodium glutamate: effects of prolonged growth hormone (GH)-releasing hormone deficiency on pulsatile GH secretion and growth in female rats. Endocrinology 128(2):1100–1106PubMedGoogle Scholar
  40. 40.
    de Carvalho Papa P, Vargas AM, Tavares da Silva JL, Nunes MT, Machado UF (2002) GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sci 71(16):1917–1928PubMedGoogle Scholar
  41. 41.
    Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252PubMedGoogle Scholar
  42. 42.
    Klip A, Tsakiridis T, Marette A, Ortiz PA (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8(1):43–53PubMedGoogle Scholar
  43. 43.
    Marmo MR, Dolnikoff MS, Kettelhut IC, Matsushita DM, Hell NS, Lima FB (1994) Neonatal monosodium glutamate treatment increases epididymal adipose tissue sensitivity to insulin in three-month old rats. Braz J Med Biol Res 27(5):1249–1253PubMedGoogle Scholar
  44. 44.
    Niijima A, Togiyama T, Adachi A (1990) Cephalic-phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiol Behav 48(6):905–908PubMedGoogle Scholar
  45. 45.
    Viarouge C, Even P, Rougeot C, Nicolaidis S (1991) Effects on metabolic and hormonal parameters of monosodium glutamate (umami taste) ingestion in the rat. Physiol Behav 49(5):1013–1018PubMedGoogle Scholar
  46. 46.
    Steffens AB, Leuvenink H, Scheurink AJ (1994) Effects of monosodium glutamate (umami taste) with and without guanosine 5′-monophosphate on rat autonomic responses to meals. Physiol Behav 56(1):59–63PubMedGoogle Scholar
  47. 47.
    Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164(3880):719–721PubMedGoogle Scholar
  48. 48.
    Minokoshi Y, Saito M, Shimazu T (1986) Sympathetic denervation impairs responses of brown adipose tissue to VMH stimulation. Am J Phys 251(5 Pt 2):R1005–R1008.  https://doi.org/10.1152/ajpregu.1986.251.5.R1005Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zahra Bahadoran
    • 1
  • Parvin Mirmiran
    • 1
  • Asghar Ghasemi
    • 2
    Email author
  1. 1.Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Endocrine Physiology Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations