The Use of Primary Hepatocytes in Assessment of Drug Safety and Toxicity

  • Paul C. Guest
Part of the Methods in Molecular Biology book series (MIMB, volume 1916)


The identification of biomarkers for toxicity is becoming increasingly important for drug discovery and development. This chapter describes the preparation and utilization of primary rat hepatocytes as a cellular model of steatosis. A protocol is presented for dosing the cells with the steatosis-inducing compound amiodarone, along with the conduction of assays for measuring lipid accumulation and mitochondrial function. A differential solubility extraction procedure is also presented, which can be used for proteomic profiling analysis.

Key words

Drug discovery Drug toxicity Steatosis Cell model Hepatocytes Nile Red Mitochondrial dehydrogenase 


  1. 1.
    Kramer JA, Sagartz JE, Morris DL (2007) The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 6(8):636–649CrossRefPubMedGoogle Scholar
  2. 2.
    Weiler S, Merz M, Kullak-Ublick GA (2015) Drug-induced liver injury: the dawn of biomarkers? F1000Prime Rep 7:34. Scholar
  3. 3.
    Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL et al (2017) Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 66(6):1154–1164CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mortishire-Smith RJ, Skiles GL, Lawrence JW, Spence S, Nicholls AW, Johnson B et al (2004) Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chem Res Toxicol 17(2):165–173CrossRefPubMedGoogle Scholar
  5. 5.
    Meneses-Lorente G, Guest PC, Lawrence J, Muniappa N, Knowles MR, Skynner HA et al (2004) A proteomic investigation of drug-induced steatosis in rat liver. Chem Res Toxicol 17(5):605–612CrossRefPubMedGoogle Scholar
  6. 6.
    Berson A, De Beco V, Lettéron P, Robin MA, Moreau C, El Kahwaji J et al (1998) Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology 114(4):764–774CrossRefPubMedGoogle Scholar
  7. 7.
    Strom SC, Jirtle RL, Jones RS, Novicki DL, Rosenberg MR, Novotny A, Irons G et al (1982) Isolation, culture, and transplantation of human hepatocytes. J Natl Cancer Inst 68(5):771–778PubMedGoogle Scholar
  8. 8.
    Stoddart MJ (2011) Cell viability assays: introduction. Methods Mol Biol 740:1–6CrossRefPubMedGoogle Scholar
  9. 9.
    McMillian MK, Grant ER, Zhong Z, Parker JB, Li L, Zivin RA et al (2001) Nile Red binding to HepG2 cells: an improved assay for in vitro studies of hepatosteatosis. In Vitr Mol Toxicol 14(3):177–190CrossRefPubMedGoogle Scholar
  10. 10.
    Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94(1–2):57–63CrossRefGoogle Scholar
  11. 11.
    Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez JC et al (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19(5):837–844CrossRefGoogle Scholar
  12. 12.
    Meneses-Lorente G, Watt A, Salim K, Gaskell SJ, Muniappa N, Lawrence J et al (2006) Identification of early proteomic markers for hepatic steatosis. Chem Res Toxicol 19(8):986–998CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations