Advertisement

Characterization of Transplantable Insulinoma Cells

  • Paul C. Guest
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1916)

Abstract

This chapter describes the propagation and characterization of transplantable insulinoma cells as model of insulin-producing pancreatic islet cells in the rat. Here, the cells are propagated by transplantation into rats followed by harvesting after growth for approximately 1 month. The cells are then purified by Percoll density gradient centrifugation and characterized by pulse-chase radiolabelling and immunoprecipitation of the insulin-related peptides. The results show that the transplantable insulinoma cells produce insulin in a manner similar to that found in normal pancreatic islets.

Key words

Insulinoma Pancreatic islets Insulin Density gradient centrifugation Pulse-chase biosynthetic labelling Immunoprecipitation 

References

  1. 1.
    Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC (1977) A transplantable insulinoma in the rat. Proc Natl Acad Sci U S A 74:628–632CrossRefGoogle Scholar
  2. 2.
    Sopwith AM, Hutton JC, Naber SP, Chick WL, Hales CN (1981) Insulin secretion by a transplantable rat islet cell tumour. Diabetologia 21:224–229CrossRefGoogle Scholar
  3. 3.
    Hutton JC, Penn EJ, Peshavaria M (1982) Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia 23:365–373CrossRefGoogle Scholar
  4. 4.
    Hutton JC, Peshavaria M (1982) Proton-translocating Mg2+−dependent ATPase activity in insulin-secretory granules. Biochem J 204:161–170CrossRefGoogle Scholar
  5. 5.
    Davidson HW, Rhodes CJ, Hutton JC (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature (London) 333:93–96CrossRefGoogle Scholar
  6. 6.
    Hutton JC, Wong R, Davidson HW (2009) Isolation of dense core secretory vesicles from pancreatic endocrine cells by differential and density gradient centrifugation. Curr Protoc Cell Biol, Chapter 3: Unit 3.32. doi: https://doi.org/10.1002/0471143030.cb0332s42
  7. 7.
    Kawada Y, Asahara SI, Sugiura Y, Sato A, Furubayashi A, Kawamura M et al (2017) Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells. PLoS One 12(9):e0184435.  https://doi.org/10.1371/journal.pone.0184435CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Davidson HW, Hutton JC (1987) The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J 245:575–582CrossRefGoogle Scholar
  9. 9.
    Bennett DL, Bailyes EM, Nielsen E, Guest PC, Rutherford NG, SD A et al (1992) Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J Biol Chem 267:15229–15336PubMedGoogle Scholar
  10. 10.
    Hutton JC, Davidson HW, Peshavaria M (1987) Proteolytic processing of chromogranin A in purified insulin granules. Formation of a 20 kDa N-terminal fragment (betagranin) by the concerted action of a Ca2+−dependent endopeptidase and carboxypeptidase H (EC 3.4.17.10). Biochem J 244:457–464CrossRefGoogle Scholar
  11. 11.
    Arden SD, Rutherford NG, Guest PC, Curry WJ, Bailyes EM, Johnston CF et al (1994) The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J 298:521–528CrossRefGoogle Scholar
  12. 12.
    Penn EJ, Brocklehurst KW, Sopwith AM, Hales CN, Hutton JC (1982) Ca2+−-Calmodulin dependent myosin light-chain phosphorylating activity in insulin-secreting tissues. FEBS Lett 139:4–8CrossRefGoogle Scholar
  13. 13.
    Arden SD, Roep BO, Neophytou PI, Usac EF, Duinkerken G, de Vries RR et al (1996) Imogen 38: a novel 38-kD islet mitochondrial autoantigen recognized by T cells from a newly diagnosed type 1 diabetic patient. J Clin Invest 97:551–561CrossRefGoogle Scholar
  14. 14.
    Sheng H, Hassanali S, Nugent C, Wen L, Hamilton-Williams E, Dias P et al (2011) Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice. J Immunol 187:1591–1600CrossRefGoogle Scholar
  15. 15.
    Sobey WJ, Beer SF, Carrington CA, Clark PMS, Frank BH, Gray IP et al (1989) Sensitive and specific two site immunoradiometric assays for human insulin, proinsulin, 65-66 split and 32-33 split proinsulin. Biochem J 260:535–541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations