Assaying Reproductive Capacity in Female Rodents

  • Catherine E. Aiken
  • Jane L. Tarry-Adkins
  • Susan E. Ozanne
Part of the Methods in Molecular Biology book series (MIMB, volume 1916)


It is an important part of many rodent studies to assess reproductive capacity in the female. Animal models that involve exposure to organic compounds, teratogenicity studies, or exposure to suboptimal environments during early development often result in deficits in female fertility. In addition to longitudinal physiology assays of fecundity, there are several molecular biology approaches to assessing female reproductive potential that can be performed to provide a “snapshot” of fertility potential at a single time-point. Here we describe some of the most useful ways to assess female reproductive capacity in rodents.

Key words

Ovary Female Reproductive system Estropause Follicle 



The authors are members of the University of Cambridge MRC Metabolic Disease Unit and are funded by the UK Medical Research Council MC UU12012/04). CA is funded by a grant from the Addenbrooke’s Charitable Trust (ACT) and by the NIHR Cambridge Comprehensive Biomedical Research Centre.


  1. 1.
    Sadleir RM (1968) Reproductive responses to the environment in mammals. J Psychosom Res 12(1):3–9CrossRefPubMedGoogle Scholar
  2. 2.
    Rekwot PI, Ogwu D, Oyedipe EO, Sekoni VO (2001) The role of pheromones and biostimulation in animal reproduction. Anim Reprod Sci 65(3–4):157–170CrossRefPubMedGoogle Scholar
  3. 3.
    Bronson FH (1985) Mammalian reproduction: an ecological perspective. Biol Reprod 32(1):1–26CrossRefPubMedGoogle Scholar
  4. 4.
    Bronson FH (1979) The reproductive ecology of the house mouse. Q Rev Biol 54(3):265–299CrossRefPubMedGoogle Scholar
  5. 5.
    Takasu NN, Nakamura TJ, Tokuda IT, Todo T, Block GD, Nakamura W (2015) Recovery from age-related infertility under environmental light-dark cycles adjusted to the intrinsic circadian period. Cell Rep 12(9):1407–1413CrossRefPubMedGoogle Scholar
  6. 6.
    Gangrade BK, Dominic CJ (1984) Studies of the male-originating pheromones involved in the Whitten effect and Bruce effect in mice. Biol Reprod 31(1):89–96CrossRefPubMedGoogle Scholar
  7. 7.
    Takacs S, Gries R, Gries G (2017) Sex hormones function as sex attractant pheromones in house mice and brown rats. Chembiochem 18(14):1391–1395CrossRefPubMedGoogle Scholar
  8. 8.
    Buffet NC, Bouchard P (2001) The neuroendocrine regulation of the human ovarian cycle. Chronobiol Int 18(6):893–919PubMedGoogle Scholar
  9. 9.
    Ma W, Miao Z, Novotny MV (1998) Role of the adrenal gland and adrenal-mediated chemosignals in suppression of estrus in the house mouse: the lee-boot effect revisited. Biol Reprod 59(6):1317–1320CrossRefPubMedGoogle Scholar
  10. 10.
    Bartke A, Wolff GL (1966) Influence of the lethal yellow (ay) gene on estrous synchrony in mice. Science 153(3731):79–80CrossRefPubMedGoogle Scholar
  11. 11.
    Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB (2006) A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 12(6):685–718CrossRefPubMedGoogle Scholar
  12. 12.
    Nelson SM, Telfer EE, Anderson RA (2013) The ageing ovary and uterus: new biological insights. Hum Reprod Update 19(1):67–83CrossRefPubMedGoogle Scholar
  13. 13.
    Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234(2):339–351CrossRefPubMedGoogle Scholar
  14. 14.
    Gougeon A, Testart J (1986) Germinal vesicle breakdown in oocytes of human atretic follicles during the menstrual cycle. J Reprod Fertil 78(2):389–401CrossRefPubMedGoogle Scholar
  15. 15.
    Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding Andersen C (2003) Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod 18(6):1158–1164CrossRefPubMedGoogle Scholar
  16. 16.
    Bernal AB, Vickers MH, Hampton MB, Poynton RA, Sloboda DM (2010) Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS One 5(12):e15558. Scholar
  17. 17.
    Faire M, Skillern A, Arora R, Nguyen DH, Wang J, Chamberlain C et al (2015) Follicle dynamics and global organization in the intact mouse ovary. Dev Biol 403(1):69–79CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Borges E, Braga D, Setti A, Figueira RC, Iaconelli A Jr (2017) The predictive value of serum concentrations of anti-Mullerian hormone for oocyte quality, fertilization, and implantation. JBRA Assist Reprod 21(3):176–182CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hansen KR, Hodnett GM, Knowlton N, Craig LB (2011) Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril 95(1):170–175CrossRefPubMedGoogle Scholar
  20. 20.
    Gruijters MJ, Visser JA, Durlinger AL, Themmen AP (2003) Anti-Mullerian hormone and its role in ovarian function. Mol Cell Endocrinol 211(1–2):85–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Catherine E. Aiken
    • 1
    • 2
  • Jane L. Tarry-Adkins
    • 3
  • Susan E. Ozanne
    • 3
  1. 1.Department of Obstetrics and GynaecologyUniversity of CambridgeCambridgeUK
  2. 2.NIHR Cambridge Comprehensive Biomedical Research CentreCambridgeUK
  3. 3.MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceAddenbrooke’s HospitalCambridgeUK

Personalised recommendations