Advertisement

Calpain pp 93-101 | Cite as

Expression and Activity of Calpain A in Drosophila melanogaster

  • Maira Cardoso
  • Danielle Oliveira
  • Helena AraujoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1915)

Abstract

Detecting calpain activity in Drosophila tissues is a fundamental tool to study calpain function. We use differential centrifugation to prepare membrane- versus cytosol-enriched fractions for measuring calpain activity with the fluorogenic substrate N-LY-AMC. With this method one can measure calpain A activity in wild-type flies and in several mutant fly backgrounds, revealing a strong correlation between in situ membrane distribution and in vitro determined activity measurements. Here we describe the steps for tissue preparation and calpain activity measurement in the Drosophila embryo.

Key words

Calpain A Drosophila Calpain activity Fluorogenic substrate 

Notes

Acknowledgments

This work was supported by CNPq/Brazil grant to HA and fellowship to MAC.

References

  1. 1.
    Delaney SJ, Hayward DC, Barleben F, Fischbach KF, Miklos GL (1991) Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc Natl Acad Sci U S A 88(16):7214–7218CrossRefGoogle Scholar
  2. 2.
    Emori Y, Saigo K (1994) Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development of Drosophila. J Biol Chem 269(40):25137–25142PubMedGoogle Scholar
  3. 3.
    Jekely G, Friedrich P (1999) Characterization of two recombinant Drosophila calpains. CALPA and a novel homolog, CALPB. J Biol Chem 274(34):23893–23900CrossRefGoogle Scholar
  4. 4.
    Theopold U, Pinter M, Daffre S, Tryselius Y, Friedrich P, Nassel DR, Hultmark D (1995) CalpA, a Drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol Cell Biol 15(2):824–834CrossRefGoogle Scholar
  5. 5.
    Farkas A, Tompa P, Schad E, Sinka R, Jekely G, Friedrich P (2004) Autolytic activation and localization in Schneider cells (S2) of calpain B from Drosophila. Biochem J 378(Pt 2):299–305.  https://doi.org/10.1042/BJ20031310CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H (2009) The Ca2+−dependent protease calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 126(8-9):737–751.  https://doi.org/10.1016/j.mod.2009.04.005CrossRefPubMedGoogle Scholar
  7. 7.
    Fontenele M, Lim B, Oliveira D, Buffolo M, Perlman DH, Schupbach T, Araujo H (2013) Calpain A modulates toll responses by limited Cactus/IkappaB proteolysis. Mol Biol Cell 24(18):2966–2980.  https://doi.org/10.1091/mbc.E13-02-0113CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vieira V, Cardoso MA, Araujo H (2017) Calpain A controls mitotic synchrony in the Drosophila blastoderm embryo. Mech Dev 144(Pt B):141–149.  https://doi.org/10.1016/j.mod.2016.05.005CrossRefPubMedGoogle Scholar
  9. 9.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  10. 10.
    Friedrich P, Tompa P, Farkas A (2004) The calpain-system of Drosophila melanogaster: coming of age. BioEssays 26(10):1088–1096.  https://doi.org/10.1002/bies.20106CrossRefPubMedGoogle Scholar
  11. 11.
    Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K (2013) Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340(6139):1475–1478.  https://doi.org/10.1126/science.1234879CrossRefPubMedGoogle Scholar
  12. 12.
    Spadoni C, Farkas A, Sinka R, Tompa P, Friedrich P (2003) Molecular cloning and RNA expression of a novel Drosophila calpain, Calpain C. Biochem Biophys Res Commun 303(1):343–349CrossRefGoogle Scholar
  13. 13.
    Lima AP, dos Reis FC, Serveau C, Lalmanach G, Juliano L, Menard R, Vernet T, Thomas DY, Storer AC, Scharfstein J (2001) Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol Biochem Parasitol 114(1):41–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maira Cardoso
    • 1
  • Danielle Oliveira
    • 2
  • Helena Araujo
    • 1
    • 3
    Email author
  1. 1.Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Biochemistry, Institute of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Institute of Molecular EntomologyRio de JaneiroBrazil

Personalised recommendations