Advertisement

Calpain pp 81-92 | Cite as

Immunohistochemical Localization of Calpains in the Amphibian Xenopus laevis

  • Jean-Marie Exbrayat
  • Elara N. Moudilou
  • Claire Brun
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1915)

Abstract

Though histochemical techniques have been used for decades, they are still very important in basic research. They make it possible to work on fixed tissues and provide a large amount of information in a relatively short time and at a low cost. Here we describe methods for indirect immunohistochemistry and immunofluorescence on sections of tadpoles and tissues of adult amphibians belonging to the species Xenopus laevis. The objective is to localize calpains within tissues in order to understand their involvement in cellular processes.

Key words

Immunofluorescence Immunohistochemistry Calpains Amphibians Embryonic development 

Notes

Acknowledgments

This work was supported by the Lyon Catholic University.

References

  1. 1.
    Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824:224–236CrossRefGoogle Scholar
  2. 2.
    Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T, Mizuguchi J (2003) Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189:221–230CrossRefGoogle Scholar
  3. 3.
    Yajima Y, Kawashima S (2002) Calpain function in the differentiation of mesenchymal stem cells. Biol Chem 383:757–764CrossRefGoogle Scholar
  4. 4.
    Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA (2000) Disruption of the murine calpain small subunit gene, CAPN4: calpain is essential for embryonic development, but not for cell growth and division. Mol Cell Biol 20:4474–4481CrossRefGoogle Scholar
  5. 5.
    Zimmerman UJ, Boring L, Pak JH, Mukerjee N, Wang KK (2000) The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 50:63–68CrossRefGoogle Scholar
  6. 6.
    Dutt P, Croall DE, Arthur JS, Veyra TD, Williams K, Elce JS, Greer PA (2006) M-Calpain is required for preimplantation embryonic development in mice. BMC Dev Biol 6:3CrossRefGoogle Scholar
  7. 7.
    Lepage SE, Bruce AE (2008) Characterization and comparative expression of zebrafish calpain system genes during early development. Dev Dyn 237:819–829CrossRefGoogle Scholar
  8. 8.
    Emori Y, Saigo K (1995) Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development of Drosophila. J Biol Chem 270:22652CrossRefGoogle Scholar
  9. 9.
    Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838CrossRefGoogle Scholar
  10. 10.
    Macqueen DJ, Wilcox AH (2014) Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biol 4:130219.  https://doi.org/10.1098/rsob.130219CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sargianos N, Gaitanaki C, Beiste I (1994) Purification and characterization of m-calpain from the skeletal muscle of the amphibian Rana ridibunda. J Exp Zool 269:95–105CrossRefGoogle Scholar
  12. 12.
    Sargianos N, Gaitanaki C, Beiste I (1995) Studies on the autolysis of m-calpain from the skeletal muscle of the amphibian Rana ridibunda. J Exp Zool 271:82–94CrossRefGoogle Scholar
  13. 13.
    Cao Y, Zhao H, Grunz H (2001) XCL-2 is a novel m-type calpain and disrupts morphogenetic movements during embryogenesis in Xenopus laevis. Develop Growth Differ 43:563–571CrossRefGoogle Scholar
  14. 14.
    Abrouk-Vérot L, Brun C, Exbrayat JM (2013) Expression patterns of CAPN1 and CAPN8b genes during embryogenesis in Xenopus laevis. CellBio 2:211–216CrossRefGoogle Scholar
  15. 15.
    Di Primio C, Marracci S, Cecchettini A, Nardi I, Giorgi F, Fausto AM, Gambellini G, Mazzini M (2007) Differential tissue expression of a calpastatin isoform in Xenopus embryos. Micron 38:268–277CrossRefGoogle Scholar
  16. 16.
    Moudilou EN, Mouterfi N, Exbrayat JM, Brun C (2010) Calpains expression during Xenopus laevis development. Tissue Cell 42:275–281CrossRefGoogle Scholar
  17. 17.
    Exbrayat JM, Moudilou EA, Abrouk L, Brun C (2012) Apoptosis in amphibian development. Adv Biosci Biotechnol 3:669–678CrossRefGoogle Scholar
  18. 18.
    Estabel J, Exbrayat JM (2002) Localisation des récepteurs AMPA/kaïnate dans les organes périphériques chez Xenopus laevis par immunohistochimie. Rev Fr Histotechnol 15:9–14Google Scholar
  19. 19.
    Estabel J, König N, Shiokawa K, Exbrayat JM (2005) Apoptosis in Xenopus genus. In: Scovassi I (ed) Apoptosis. Research Signpost, Trivandrum, pp 147–156Google Scholar
  20. 20.
    Moudilou M, Poirier AL, Brun C, Exbrayat JM (2009) Calpains expression during Xenopus laevis development. Mech Dev:S167Google Scholar
  21. 21.
    Hensey C, Gautier J (1998) Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev Biol 203:36–48.  https://doi.org/10.1006/dbio.1998.9028CrossRefPubMedGoogle Scholar
  22. 22.
    Brun C, Moudilou EN, Bouchot C, Abrouk-Vérot L, Exbrayat JM (2013) Relationships between calpains and glutamate or kainate-induced apoptosis in Xenopus laevis tadpoles. Folia Histochem Cytobiol 51:300–311CrossRefGoogle Scholar
  23. 23.
    König N, Poluch S, Estabel J, Durand M, Drian MJ, Exbrayat JM (2001) Synaptic and non-synaptic AMPA receptors permeable to calcium. Jpn J Pharmacol 86:1–17CrossRefGoogle Scholar
  24. 24.
    Estabel J, Mercer A, Koenig N, Exbrayat JM (2003) Programmed cell death in Xenopus laevis metamorphosis development prior to, and during, metamorphosis. Life Sci 73:3298–3306CrossRefGoogle Scholar
  25. 25.
    Estabel J, Exbrayat JM (2005) AMPA receptors localization by immunohistochemistry in Xenopus tadpoles. In: Ananjeva N, Tsinenko O (eds) Herpetologia Petropolitana, pp 133–135Google Scholar
  26. 26.
    Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland Publishing Company, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jean-Marie Exbrayat
    • 1
  • Elara N. Moudilou
    • 1
  • Claire Brun
    • 1
  1. 1.University of Lyon, UMRS 449: General Biology—Reproduction and Comparative Development, Lyon Catholic University (UCLy), Ecole Pratique des Hautes Etudes (EPHE, PSL)LyonFrance

Personalised recommendations