Advertisement

Calpain pp 219-232 | Cite as

In Vivo Calpain Knockdown Using Delivery of siRNA

  • Xiaoqian Liu
  • Guochang HuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1915)

Abstract

Calpain is an intracellular Ca2+-dependent non-lysosomal cysteine protease expressed ubiquitously in mammals. In endothelial cells, dysregulation of calpain has been shown to be involved in a wide variety of pathological conditions such as angiogenesis, vascular inflammation, and diabetes. Cell- or tissue-targeted in vivo delivery of small interfering RNA (siRNA) is a powerful research tool in the analysis of protein function and has been proposed as an attractive therapeutic modality that is applicable against a large number of human diseases including cancer. In this chapter we describe a method to knockdown calpain 1 in mouse pulmonary vascular endothelium using delivery of siRNA/cationic liposome complex. This technique results in a greater than 80% reduction in calpain 1 protein levels 48 h after a single i.v. injection of calpain 1 siRNA (0.5 mg siRNA/kg)/cationic liposome complex. We also describe confocal imaging to verify the loss of calpain 1 expression in pulmonary microvessel endothelial cells and application of this technique in the mouse model of ventilator-induced lung injury.

Key words

siRNA Calpain Knockdown Cationic liposome Endothelial cell Lung 

Notes

Acknowledgments

This work was supported by the NIH Grant HL104092 to GH.

References

  1. 1.
    Ono Y, Saido TC, Sorimachi H (2016) Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 15:854–876CrossRefGoogle Scholar
  2. 2.
    Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, Gandhirajan RK, Eguchi S, Scalia R, Madesh M, Yang X, Wang H (2015) Hyperhomocysteinemia and hyperglycemia induce and potentiate endothelial dysfunction via μ-calpain activation. Diabetes 64:947–959CrossRefGoogle Scholar
  3. 3.
    Covington MD, Schnellmann RG (2012) Chronic high glucose downregulates mitochondrial calpain 10 and contributes to renal cell death and diabetes-induced renal injury. Kidney Int 81:391–400CrossRefGoogle Scholar
  4. 4.
    Liu D, Yan Z, Minshall RD, Schwartz DE, Chen Y, Hu G (2012) Activation of calpain s mediates early lung neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 302:L370–L379CrossRefGoogle Scholar
  5. 5.
    Miyazaki T, Taketomi Y, Takimoto M, Lei XF, Arita S, Kim Kaneyama JR, Arata S, Ohata H, Ota H, Murakami M, Miyazaki A (2011) m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation 124:2522–2532CrossRefGoogle Scholar
  6. 6.
    Bevers MB, Ingleton LP, Che D, Cole JT, Li L, Da T, Kopil CM, Cohen AS, Neumar RW (2010) RNAi targeting micro-calpain increases neuron survival and preserves hippocampal function after global brain ischemia. Exp Neurol 224:170–177CrossRefGoogle Scholar
  7. 7.
    Sha D, Jin Y, Wu H, Wei J, Lin CH, Lee YH, Buddhala C, Kuchay S, Chishti AH, Wu JY (2008) Role of mu-calpain in proteolytic cleavage of brain l-glutamic acid decarboxylase. Brain Res 1207:9–18CrossRefGoogle Scholar
  8. 8.
    Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277:4814–4827CrossRefGoogle Scholar
  9. 9.
    Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117:3623–3632CrossRefGoogle Scholar
  10. 10.
    Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999CrossRefGoogle Scholar
  11. 11.
    Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114CrossRefGoogle Scholar
  12. 12.
    Mikhaylova M, Stasinopoulos I, Kato Y, Artemov D, Bhujwalla ZM (2009) Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther 16:217–226CrossRefGoogle Scholar
  13. 13.
    Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178CrossRefGoogle Scholar
  14. 14.
    Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25:1149–1157CrossRefGoogle Scholar
  15. 15.
    Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X et al (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1:39–46CrossRefGoogle Scholar
  16. 16.
    McLachlan G, Ho LP, Davidson-Smith H, Samways J, Davidson H, Stevenson BJ et al (1996) Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Ther 3:1113–1123PubMedGoogle Scholar
  17. 17.
    Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F et al (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:199–209CrossRefGoogle Scholar
  18. 18.
    Bardita C, Predescu D, Predescu S (2013) Long-term silencing of Intersectin-1s in mouse lungs by repeated delivery of a specific siRNA via cationic liposomes. Evaluation of knockdown effects by electron microscopy. J Vis Exp 76:50316Google Scholar
  19. 19.
    DN P, Neamu R, Bardita C, Wang M, Predescu SA (2012) Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int 2012:672705Google Scholar
  20. 20.
    Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD (2008) Intercellular adhesion molecule-1 dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ Res 102:e120–e131CrossRefGoogle Scholar
  21. 21.
    Wang YL, Malik AB, Sun Y, Hu S, Reynolds AB, Minshall RD, Hu G (2011) Innate immune function of the adherens junction protein p120-catenin in endothelial response to endotoxin. J Immunol 186:3180–3187CrossRefGoogle Scholar
  22. 22.
    Bai L, Andersson HA, McConnell KI, Chan DL, Hernandez M, Gonzalez J, Liu X, La Francesca S, Sakamoto JH, Serda RE (2015) Silencing of tumor necrosis factor Receptor-1 in human lung microvascular endothelial cells using particle platforms for siRNA delivery. Curr Drug Targets 16:1531–1539CrossRefGoogle Scholar
  23. 23.
    Kowalski PS, Zwiers PJ, Morselt HW, Kuldo JM, Leus NG, Ruiters MH, Molema G, Kamps JA (2013) Anti-VCAM-1 SAINT-O-Somes enable endothelial-specific delivery of siRNA and downregulation of inflammatory genes in activated endothelium in vivo. J Control Release 176:64–75CrossRefGoogle Scholar
  24. 24.
    Zhou MY, Lo SK, Bergenfeldt M, Tiruppathi C, Jaffe A, Xu N, Malik AB (1998) In vivo expression of neutrophil inhibitory factor via gene transfer prevents lipopolysaccharide-induced lung neutrophil infiltration and injury by a beta2 integrin-dependent mechanism. J Clin Invest 101:2427–2437CrossRefGoogle Scholar
  25. 25.
    Zhu N, Liggitt D, Liu Y, Debs R (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261:209–211CrossRefGoogle Scholar
  26. 26.
    Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC (1995) Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci U S A 92:9742–9746CrossRefGoogle Scholar
  27. 27.
    Li S, Huang L (1997) In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther 4:891–900CrossRefGoogle Scholar
  28. 28.
    Liu F, Qi H, Huang L, Liu D (1997) Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther 4:517–523CrossRefGoogle Scholar
  29. 29.
    Liu Y, Mounkes LC, Liggitt HD, Brown CS, Solodin I, Heath TD, Debs RJ (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173CrossRefGoogle Scholar
  30. 30.
    Song YK, Liu F, Chu S, Liu D (1997) Characterization of cationic liposome- mediated gene transfer in vivo by intravenous administration. Hum Gene Ther 8:1585–1594CrossRefGoogle Scholar
  31. 31.
    Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652CrossRefGoogle Scholar
  32. 32.
    Barron LG, Meyer KB, Szoka FC Jr (1998) Effects of complement depletion on the pharmacokinetics and gene delivery mediated by cationic lipid-DNA complexes. Hum Gene Ther 9:315–323CrossRefGoogle Scholar
  33. 33.
    McLean JW, Fox EA, Baluk P, Bolton PB, Haskell A, Pearlman R, Thurston G, Umemoto EY, McDonald DM (1997) Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am J Phys 273:H387–H404Google Scholar
  34. 34.
    Liu D, Knapp EJ, Song YK (1999) Mechanisms of cationic liposome mediated transfection of the lung endothelium. In: Huang L, Wagner E, Hung MC (eds) Nonviral vectors for gene therapy. Academic Press, San Diego, CA, pp 313–335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Illinois College of MedicineChicagoUSA
  2. 2.Department of PharmacologyUniversity of Illinois College of MedicineChicagoUSA

Personalised recommendations