p73-Governed miRNA Networks: Translating Bioinformatics Approaches to Therapeutic Solutions for Cancer Metastasis

  • Stella Logotheti
  • Stephan Marquardt
  • Brigitte M. PützerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1912)


The transcription factor p73 synthesizes a large number of isoforms and presents high structural and functional homology with p53, a well-known tumor suppressor and a famous “Holy Grail” of anticancer targeting. p73 has attracted increasing attention mainly because (a) unlike p53, p73 is rarely mutated in cancer, (b) some p73 isoforms can inhibit all hallmarks of cancer, and (c) it has the ability to mimic oncosuppressive functions of p53, even in p53-mutated cells. These attributes render p73 and its downstream pathways appealing for therapeutic targeting, especially in mutant p53-driven cancers. p73 functions are, at least partly, mediated by microRNAs (miRNAs), which constitute nodal components of p73-governed networks. p73 not only regulates transcription of crucial miRNA genes, but is also predicted to affect miRNA populations in a transcription-independent manner by developing protein-protein interactions with components of the miRNA processing machinery. This combined effect of p73, both in miRNA transcription and maturation, appears to be isoform-dependent and can result in a systemic switch of cell miRNomes toward either an anti-oncogenic or oncogenic outcome. In this review, we combine literature search with bioinformatics approaches to reconstruct the p73-governed miRNA network and discuss how these crosstalks may be exploited to develop next-generation therapeutics.

Key words

ncRNAs p73 isoforms miRNome miRNA transcription miRNA maturation Computational analysis 



This work was supported by the German Cancer Aid, Dr. Mildred Scheel Stiftung [grant 70112353], the German Research Foundation (DFG) [grant PU188/17-1], Wilhelm Sander-Stiftung [grant 2015.036.1], German Federal Ministry of Education and Research (BMBF) grant 0316171 as part of the project eBio:SysMet, and Rostock University Medical Faculty for the project Systems Medicine of Cancer Invasion and Metastasis to B.M.P.


  1. 1.
    Abraham CG, Espinosa JM (2015) The crusade against mutant p53: does the COMPASS point to the holy grail? Cancer Cell 28(4):407–408. CrossRefPubMedGoogle Scholar
  2. 2.
    Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Giaretti W, Rapallo A, Sciutto A, Macciocu B, Geido E, Hermsen MA, Postma C, Baak JP, Williams RA, Meijer GA (2000) Intratumor heterogeneity of k-ras and p53 mutations among human colorectal adenomas containing early cancer. Anal Cell Pathol 21(2):49–57CrossRefGoogle Scholar
  4. 4.
    Ren ZP, Olofsson T, Qu M, Hesselager G, Soussi T, Kalimo H, Smits A, Nistér M (2007) Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors. J Neuropathol Exp Neurol 66(10):944–954. CrossRefPubMedGoogle Scholar
  5. 5.
    Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V (2013) Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev 32(3–4):511–534. CrossRefPubMedGoogle Scholar
  6. 6.
    Engelmann D, Meier C, Alla V, Pützer BM (2015) A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 34(33):4287–4299. CrossRefPubMedGoogle Scholar
  7. 7.
    Stiewe T, Zimmermann S, Frilling A, Esche H, Pützer BM (2002) Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res 62(13):3598–3602PubMedGoogle Scholar
  8. 8.
    Ming L, Sakaida T, Yue W, Jha A, Zhang L, Yu J (2008) Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis 29(10):1878–1884. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chakraborty J, Banerjee S, Ray P, Hossain DM, Bhattacharyya S, Adhikary A, Chattopadhyay S, Das T, Sa G (2010) Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem 285(43):33104–33112. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    John K, Alla V, Meier C, Pützer BM (2011) GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ 18(5):874–886. CrossRefPubMedGoogle Scholar
  11. 11.
    Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28(10):534–540. CrossRefPubMedGoogle Scholar
  12. 12.
    Shen J, Hung MC (2015) Signaling-mediated regulation of MicroRNA processing. Cancer Res 75(5):783–791. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xiao Y, Xu C, Guan J, Ping Y, Fan H, Li Y, Zhao H, Li X (2012) Discovering dysfunction of multiple microRNAs cooperation in disease by a conserved microRNA co-expression network. PLoS One 7(2):e32201. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schmitz U, Lai X, Winter F, Wolkenhauer O, Vera J, Gupta SK (2014) Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res 42(12):7539–7552. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lai X, Gupta SK, Schmitz U, Marquardt S, Knoll S, Spitschak A, Wolkenhauer O, Pützer BM, Vera J (2018) MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance. Theranostics 8(4):1106–1120. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S (2013) Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 41(5):2817–2831. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sengupta D, Bandyopadhyay S (2013) Topological patterns in microRNA-gene regulatory network: studies in colorectal and breast cancer. Mol BioSyst 9(6):1360–1371. CrossRefPubMedGoogle Scholar
  18. 18.
    Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–626. CrossRefPubMedGoogle Scholar
  19. 19.
    Galtsidis S, Logotheti S, Pavlopoulou A, Zampetidis CP, Papachristopoulou G, Scorilas A, Vojtesek B, Gorgoulis V, Zoumpourlis V (2017) Unravelling a p73-regulated network: the role of a novel p73-dependent target, MIR3158, in cancer cell migration and invasiveness. Cancer Lett 388:96–106. CrossRefPubMedGoogle Scholar
  20. 20.
    Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17(12):719–732. CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng F, Jia P, Wang Q, Lin CC, Li WH, Zhao Z (2014) Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome. Mol Biol Evol 31(8):2156–2169. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhu Y, Skogerbø G, Ning Q, Wang Z, Li B, Yang S, Sun H, Li Y (2012) Evolutionary relationships between miRNA genes and their activity. BMC Genomics 13:718. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Koufaris C (2016) Human and primate-specific microRNAs in cancer: evolution, and significance in comparison with more distantly-related research models: the great potential of evolutionary young microRNA in cancer research. BioEssays 38(3):286–294. CrossRefPubMedGoogle Scholar
  24. 24.
    Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17(2):145–150. CrossRefPubMedGoogle Scholar
  25. 25.
    Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23(1):34–45. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, Rothenberg SM, Ellisen LW (2011) A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest 121(2):809–820. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jacques C, Calleja LR, Baud’huin M, Quillard T, Heymann D, Lamoureux F, Ory B (2016) miRNA-193a-5p repression of p73 controls Cisplatin chemoresistance in primary bone tumors. Oncotarget 7(34):54503–54514. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, Deng Z, Kumar A, Zhang L, Merchant ML, Yan J, Miller DM, Zhang HG (2017) MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8:14448. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tran N (2016) Cancer exosomes as miRNA factories. Trends Cancer 2(7):329–331. CrossRefPubMedGoogle Scholar
  30. 30.
    Gao Q, Zheng J (2018) microRNA-323 upregulation promotes prostate cancer growth and docetaxel resistance by repressing p73. Biomed Pharmacother 97:528–534. CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang X, Li H (2018) MiR-1180-5p regulates apoptosis of Wilms’ tumor by targeting. Onco Targets Ther 11:823–831. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS, Alder H, Liu CG, Dejean A, Croce CM (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208(5):875–883. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Piovan C, Palmieri D, Di Leva G, Braccioli L, Casalini P, Nuovo G, Tortoreto M, Sasso M, Plantamura I, Triulzi T, Taccioli C, Tagliabue E, Iorio MV, Croce CM (2012) Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol 6(4):458–472. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. CrossRefPubMedGoogle Scholar
  35. 35.
    Knouf EC, Garg K, Arroyo JD, Correa Y, Sarkar D, Parkin RK, Wurz K, O’Briant KC, Godwin AK, Urban ND, Ruzzo WL, Gentleman R, Drescher CW, Swisher EM, Tewari M (2012) An integrative genomic approach identifies p73 and p63 as activators of miR-200 microRNA family transcription. Nucleic Acids Res 40(2):499–510. CrossRefPubMedGoogle Scholar
  36. 36.
    Alla V, Kowtharapu BS, Engelmann D, Emmrich S, Schmitz U, Steder M, Pützer BM (2012) E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry. Cell Cycle 11(16):3067–3078. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lu Z, Jiao D, Qiao J, Yang S, Yan M, Cui S, Liu Z (2015) Restin suppressed epithelial-mesenchymal transition and tumor metastasis in breast cancer cells through upregulating mir-200a/b expression via association with p73. Mol Cancer 14:102. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5(4):872–881. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meier C, Hardtstock P, Joost S, Alla V, Pützer BM (2016) p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res 76(2):197–205. CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang Y, Liao JM, Zeng SX, Lu H (2011) p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep 12(8):811–817. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liao JM, Zhou X, Zhang Y, Lu H (2012) MiR-1246: a new link of the p53 family with cancer and Down syndrome. Cell Cycle 11(14):2624–2630. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Batliner J, Buehrer E, Fey MF, Tschan MP (2012) Inhibition of the miR-143/145 cluster attenuated neutrophil differentiation of APL cells. Leuk Res 36(2):237–240. CrossRefPubMedGoogle Scholar
  43. 43.
    Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH, Cesareni G, Melino G (2005) The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 24(4):836–848. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sampath D, Calin GA, Puduvalli VK, Gopisetty G, Taccioli C, Liu CG, Ewald B, Liu C, Keating MJ, Plunkett W (2009) Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood 113(16):3744–3753. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    O’Malley BW, Kumar R (2009) Nuclear receptor coregulators in cancer biology. Cancer Res 69(21):8217–8222. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Koeppel M, van Heeringen SJ, Kramer D, Smeenk L, Janssen-Megens E, Hartmann M, Stunnenberg HG, Lohrum M (2011) Crosstalk between c-Jun and TAp73alpha/beta contributes to the apoptosis-survival balance. Nucleic Acids Res 39(14):6069–6085. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nakano K, Bálint E, Ashcroft M, Vousden KH (2000) A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 19(37):4283–4289CrossRefGoogle Scholar
  48. 48.
    Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533. CrossRefPubMedGoogle Scholar
  49. 49.
    Boominathan L (2010) The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One 5(5):e10615. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yeom KH, Lee Y, Han J, Suh MR, Kim VN (2006) Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 34(16):4622–4629. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. CrossRefPubMedGoogle Scholar
  53. 53.
    van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507. CrossRefPubMedGoogle Scholar
  54. 54.
    Skourti E, Logotheti S, Kontos CK, Pavlopoulou A, Dimoragka PT, Trougakos IP, Gorgoulis V, Scorilas A, Michalopoulos I, Zoumpourlis V (2016) Progression of mouse skin carcinogenesis is associated with the orchestrated deregulation of mir-200 family members, mir-205 and their common targets. Mol Carcinog 55(8):1229–1242. CrossRefPubMedGoogle Scholar
  55. 55.
    Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D’Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18(6):683–695. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC, Jaggi M (2017) miRNA nanotherapeutics for cancer. Drug Discov Today 22(2):424–432. CrossRefPubMedGoogle Scholar
  57. 57.
    Xie Y, Murray-Stewart T, Wang Y, Yu F, Li J, Marton LJ, Casero RA, Oupický D (2017) Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. J Control Release 246:110–119. CrossRefPubMedGoogle Scholar
  58. 58.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang A, Xu M, Mo YY (2014) Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol 6(3):181–191. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Stella Logotheti
    • 1
  • Stephan Marquardt
    • 1
  • Brigitte M. Pützer
    • 1
    Email author
  1. 1.Institute of Experimental Gene Therapy and Cancer ResearchRostock University Medical CenterRostockGermany

Personalised recommendations