Identification of Immune Modulatory miRNAs by miRNA Enrichment via RNA Affinity Purification

  • Uta Sandy Tretbar
  • Michael Friedrich
  • Maria-Filothei Lazaridou
  • Barbara SeligerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1913)


Immune escape by cancer cells can be triggered by aberrant expression of immunological key players, which can be achieved by distinct molecular mechanisms including immune modulatory miRNAs. One suitable method to identify miRNAs that specifically target immune relevant molecules is the miRNA enrichment via RNA affinity purification method named miTRAP (miRNA trapping by RNA in vitro affinity purification). Here, we present a detailed protocol for construct preparation, RNA immobilization via MS2BP-MBP to beads, miRNA enrichment, and elution followed by analysis of the obtained miRNA candidates via qRT-PCR.

Key words

miRNAs RNA in vitro affinity purification miTRAP miRNA enrichment Immune relevant 


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. Scholar
  2. 2.
    Eichmüller SB, Osen W, Mandelboim O et al (2017) Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst 109(10).
  3. 3.
    Seliger B (2017) Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors. Cytokine Growth Factor Rev 36:49–56. Scholar
  4. 4.
    Braun J, Misiak D, Busch B et al (2014) Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification). Nucleic Acids Res 42(8):e66. Scholar
  5. 5.
    Gao F, Zhao Z, Zhao W et al (2013) miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 431(3):610–616. Scholar
  6. 6.
    Wang B, Wang Q, Wang Z et al (2014) Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res 74(20):5746–5757. Scholar
  7. 7.
    Xie J, Liu M, Li Y et al (2014) Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell Mol Immunol 11(5):495–502. Scholar
  8. 8.
    Wang X, Li J, Dong K et al (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27(3):443–452. Scholar
  9. 9.
    Kulkarni S, Qi Y, O'hUigin C et al (2013) Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci U S A 110(51):20705–20710. Scholar
  10. 10.
    Jasinski-Bergner S, Stoehr C, Bukur J et al (2015) Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology 4(6):e1008805. Scholar
  11. 11.
    Cheng Z, Ma R, Tan W et al (2014) MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 46:e112. Scholar
  12. 12.
    Chen L, Gibbons DL, Goswami S et al (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241. Scholar
  13. 13.
    Johansson HE, Liljas L, Uhlenbeck OC (1997) RNA recognition by the MS2 phage coat protein. Semin Virol 8(3):176–185. Scholar
  14. 14.
    Chamberlin M, Ring J (1973) Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme. J Biol Chem 248(6):2235–2244PubMedGoogle Scholar
  15. 15.
    Jurica MS, Licklider LJ, Gygi SR et al (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8(4):426–439CrossRefGoogle Scholar
  16. 16.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  17. 17.
    Wang D, Zhang Z, O'Loughlin E et al (2012) Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26(7):693–704. Scholar
  18. 18.
    Agarwal V, Bell GW, Nam J et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4.
  19. 19.
    Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284. Scholar
  20. 20.
    Betel D, Koppal A, Agius P et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90. Scholar
  21. 21.
    Kramer MF (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol Chapter 15: Unit 15.10. Scholar
  22. 22.
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. Scholar
  23. 23.
    Summer H, Grämer R, Dröge P (2009) Denaturing urea polyacrylamide gel electrophoresis (urea PAGE). J Vis Exp 32:1485. Scholar
  24. 24.
    Kedzierski W, Porter JC (1991) A novel non-enzymatic procedure for removing DNA template from RNA transcription mixtures. Biotechniques 10(2):210–214PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Uta Sandy Tretbar
    • 1
  • Michael Friedrich
    • 1
  • Maria-Filothei Lazaridou
    • 1
  • Barbara Seliger
    • 1
    Email author
  1. 1.Institute for Medical ImmunologyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations