Advertisement

High-Throughput, Fast, and Sensitive Immunopeptidomics Sample Processing for Mass Spectrometry

  • Fabio Marino
  • Chloe Chong
  • Justine Michaux
  • Michal Bassani-SternbergEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1913)

Abstract

Comprehensive knowledge of the HLA class I and class II peptides presented to T cells is crucial for designing innovative therapeutics against cancer and other diseases. So far, methodologies for recovery of HLA class I and II peptides for subsequent mass spectrometry-based analysis have been a major limitation. In this chapter we describe a detailed protocol for a high-throughput, reproducible, and sensitive immunoaffinity-purification of HLA-I and HLA-II peptides from up to 96 samples in a plate format, suitable for tissue samples and cell lines. Our methodology reduces sample handling, has a competitive peptide yield, and can be completed within 5 h. This simplified pipeline is applicable for basic and clinical applications.

Key words

Immunopeptidomics Human leukocyte antigen Antigen processing and presentation Affinity purification Mass spectrometry HLA class I and HLA class II 

References

  1. 1.
    Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836.  https://doi.org/10.1038/nri3084CrossRefPubMedGoogle Scholar
  2. 2.
    Chong C, Marino F, Pak HS, Racle J, Daniel RT, Muller M, Gfeller D, Coukos G, Bassani-Sternberg M (2017) High-throughput and sensitive immunopeptidomics platform reveals profound IFNgamma-mediated remodeling of the HLA ligandome. Mol Cell Proteomics 17(3):533–548.  https://doi.org/10.1074/mcp.TIR117.000383CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pritchard AL, Hastie ML, Neller M, Gorman JJ, Schmidt CW, Hayward NK (2015) Exploration of peptides bound to MHC class I molecules in melanoma. Pigment Cell Melanoma Res 28(3):281–294.  https://doi.org/10.1111/pcmr.12357CrossRefPubMedGoogle Scholar
  4. 4.
    Jarmalavicius S, Welte Y, Walden P (2012) High immunogenicity of the human leukocyte antigen peptidomes of melanoma tumor cells. J Biol Chem 287(40):33401–33411.  https://doi.org/10.1074/jbc.M112.358903CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M (2015) Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 14(3):658–673.  https://doi.org/10.1074/mcp.M114.042812CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dargel C, Bassani-Sternberg M, Hasreiter J, Zani F, Bockmann JH, Thiele F, Bohne F, Wisskirchen K, Wilde S, Sprinzl MF, Schendel DJ, Krackhardt AM, Uckert W, Wohlleber D, Schiemann M, Stemmer K, Heikenwalder M, Busch DH, Richter G, Mann M, Protzer U (2015) T cells engineered to express a T-cell receptor specific for glypican-3 to recognize and kill Hepatoma cells in vitro and in mice. Gastroenterology 149(4):1042–1052.  https://doi.org/10.1053/j.gastro.2015.05.055CrossRefPubMedGoogle Scholar
  7. 7.
    Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62(20):5818–5827PubMedGoogle Scholar
  8. 8.
    Singh-Jasuja H, Emmerich NP, Rammensee HG (2004) The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol Immunother 53(3):187–195.  https://doi.org/10.1007/s00262-003-0480-xCrossRefPubMedGoogle Scholar
  9. 9.
    Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A (2010) Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci U S A 107(44):18769–18776.  https://doi.org/10.1073/pnas.1008501107CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Khodadoust MS, Olsson N, Wagar LE, Haabeth OA, Chen B, Swaminathan K, Rawson K, Liu CL, Steiner D, Lund P, Rao S, Zhang L, Marceau C, Stehr H, Newman AM, Czerwinski DK, Carlton VE, Moorhead M, Faham M, Kohrt HE, Carette J, Green MR, Davis MM, Levy R, Elias JE, Alizadeh AA (2017) Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543(7647):723–727.  https://doi.org/10.1038/nature21433CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kalaora S, Barnea E, Merhavi-Shoham E, Qutob N, Teer JK, Shimony N, Schachter J, Rosenberg SA, Besser MJ, Admon A, Samuels Y (2016) Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 7(5):5110–5117.  https://doi.org/10.18632/oncotarget.6960CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bassani-Sternberg M, Braunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, D HB, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404.  https://doi.org/10.1038/ncomms13404CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808.  https://doi.org/10.1126/science.aaa3828CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74.  https://doi.org/10.1126/science.aaa4971CrossRefPubMedGoogle Scholar
  15. 15.
    Mommen GP, Frese CK, Meiring HD, van Gaans-van den Brink J, de Jong AP, van Els CA, Heck AJ (2014) Expanding the detectable HLA peptide repertoire using electron-transfer/higher-energy collision dissociation (EThcD). Proc Natl Acad Sci U S A 111(12):4507–4512.  https://doi.org/10.1073/pnas.1321458111CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kowalewski DJ, Stevanovic S (2013) Biochemical large-scale identification of MHC class I ligands. Methods Mol Biol 960:145–157.  https://doi.org/10.1007/978-1-62703-218-6_12CrossRefPubMedGoogle Scholar
  17. 17.
    Loffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Gunder M, Carcamo Yanez VA, Mohr C, Sturm M, Nguyen HP, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bosmuller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanovic S, Konigsrainer A, Rammensee HG (2016) Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol 65(4):849–855.  https://doi.org/10.1016/j.jhep.2016.06.027CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fabio Marino
    • 1
    • 2
  • Chloe Chong
    • 1
    • 2
  • Justine Michaux
    • 1
    • 2
  • Michal Bassani-Sternberg
    • 1
    • 2
    Email author
  1. 1.Ludwig Centre for Cancer ResearchUniversity of LausanneEpalingesSwitzerland
  2. 2.Department of OncologyUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland

Personalised recommendations